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MULTIPLE ZETA VALUES AND THE WKB METHOD

MICHAL ZAKRZEWSKI AND HENRYK ZOLADEK

ABSTRACT. The multiple zeta values ((dy,...,d,) are natural generalizations
of the values ((d) of the Riemann zeta functions at integers d. They have
many applications, e.g. in knot theory and in quantum physics. It turns
out that some generating functions for the multiple zeta values, like fy(z) =

1 — ¢(d)xz? + ¢(d,d)x?¢ — ..., are related with hypergeometric equations.
More precisely, fq(z) is the value at ¢ = 1 of some hypergeometric series
aFg_1(t) =1 — 2% + ..., a solution to a hypergeometric equation of degree

d with parameter z. Our idea is to represent f;(x) as some connection coeffi-
cient between certain standard bases of solutions near ¢ = 0 and near ¢t = 1.
Moreover, we assume that |z| is large. For large complex z the above basic so-
lutions are represented in terms of so-called WKB solutions. The series which
define the WKB solutions are divergent and are subject to so-called Stokes
phenomenon. Anyway it is possible to treat them rigorously. In the paper we
review our results about application of the WKB method to the generating
functions fg(z), focusing on the cases d =2 and d = 3.

1. INTRODUCTION

We study the following hypergeometric equations
(1.1) (1 —1)o(td) g+ 2?9 = 0,

where 0 = 9; = 0/0t, with one solution in form of the hypergeometric series (see
[BE1])*
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1Recall the standard formula pFa(on,...ap;B1,...,Bgt) = 307, me where
(a),, = ala+1)...(a +n — 1) is the known Pochhammer symbol. Eq. (1.1) can be found in
[Zud1] and [Zo2]
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(1.2) o1(t;x) = gFg1(—Cz, ..., —¢ a1, 15t)
= 1—-a%+ (—z%) (L-a2%) /@) +...
here
(1.3) ¢ = e2mi/d
is the primitive root of unity of degree d (other solutions s, ..., @4 are given in

Section 3.1). For d = 1 we have the simple (and unique solution) ¢; = (1 —¢)*, so
this case is not interesting.

But when the degree of the equation is greater, d > 2, then something interesting
happens. It turns out that the solution (1.2) evaluated at ¢ = 1 is a generating
function for so-called multiple zeta values (MZV'’s, see [Zagl])?

1
(1.4) C(di,vdi) = Y s 21, A >2
0<ni<...<ng ny ... Ny
Namely,
(1.5) e1(1;2) = fa(2)

where fy is the following generating function:

(1.6) fa(z) =1—¢(d)z? + ¢(d, d)z** — ...
(see [Zo2] and Section 3 below).

It is easy to show the formula

(17) fa) = I1 (1-(%)")

which implies, in particular, that

(1.8) fa(x) =

But for odd degrees we do not have similar formulas. Since the R. Apery’s work
[Ap] we know that the number ¢(3) is irrational, but it is not known whether it is
algebraic or not. Due to formula (1.8) below we assume that:

(1.9) d=2ord>2is odd.

sinmwx

™

The idea of this paper and of [Zo2, ZZ1, Z72, 773] is to express the solution
(1.2) in suitable basis (01, ...,6;) of solutions near t = 1;
©p1 = Al(:c)é‘l + ...+ Ad(x)Hd

The basis near t = 1 is such that 6;;=1 = 0for j =1,...,d — 1 and 84/4=; is a
known nonzero number. Therefore it is enough to find the coefficient A4(x) before
f4. The coefficients A;(z) are analytic functions in € C\0, with only possible

2In some sources the sum in Eq. (1.4) is denoted ¢(dy, . ..d1).
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singularities at x = 0 and at = oo (see Sections 3). So there appears an idea to
consider behavior of the solutions when the parameter x becomes large.

For large |x| there exist some special solutions of the form
g~ a7e" D {xo(t) +xa(t)x + ..},

known as the WKB solutions. Here the ‘action’ S(¢) and the amplitudes x;(¢)
satisfy some ODEs which are easy to integrate. There exist basic WKB solutions
g°(t;x) ~ exp(oxSy(t)) with Sy(t) = fot rH/a=1(1 — 7)"Ydr and ¢ = +1/2
(j =0,...,d—1) to Eq. (1.1) (see Section 4). One would like to represent the
solutions ¢ and 6; in the WKB basis. To this aim one could use some integral
representations of the solutions ¢ and 6; and then to evaluate the corresponding

integrals, which are of oscillatory type, using the stationary phase formula (see
[Fed, He]).

This approach is tempting but it encounters serious obstacles. One of them is
the question of uniqueness of the series defining the WKB solutions. The functions
X;(t) satisfy an infinite series of ODEs and an infinite number of constants of
integration of these equations has to be determined. In Definition 1 (in Section
4.1) we define so-called testing WKB solutions g7, by choosing some arbitrary
procedure of fixing the integration constants. But it is not the right choice. In
Section 4.2 we define so-called normal WKB solutions g7, ..., which are more natural,
because they are obtained via some normalization procedure (i.e. a diagonalization)
of a corresponding linear first order differential system and this procedure is unique.

But the main difficulty arises from the fact that the series defining the WKB
solutions are divergent. It turns out that one can define analytic WKB solutions
by applying an analytic version of the normalization procedure (see Section 4.3),
but the domains of definition of the latter solutions are quite small: for 0 <t < 1
the parameter x lies in a sector in C with vertex at x = co. Moreover, the analytic
normalization requires solving some integral equation and the solutions obtained
are not unique.

In Section 5 we develop a new approach in the asymptotic analysis of linear
differential equations like Eq. (1.1). For ¢ near 0 we approximate Eq. (1.1) with
so-called Bessel type equation 9, (yay)d*1 G+ G = 0 for G(y) where y = 23t (see
Eq. (5.3)). Similarly, for s = 1 —¢ close to 0 we have an approximation by another
Bessel type equation (Eq. (5.5)) for H(z), where z = x%5?~1. These Bessel type
equations have only two singular points: regular at y = 0 (respectively at z = 0)
and irregular at y = oo (respectively at z = o0). In Theorem 1 we prove that
the hypergeometric equation (1.1) for g(¢;x) near ¢t = 0 is analytically equivalent
with the corresponding Bessel type equation for G(y) and that the corresponding
equation for h(s;x) = g(1—s;x) near s = 0 is analytically equivalent with the Bessel
type equation for H(z). The Bessel type equations admit uniquely defined WKB

do (@/(1=d)oz""" g5 » s 50, In

type solutions G (y) ~ e v’ for y—ooand H? ~ e
Section 5.3 we define so-called principal WKB solutions g7 ;. and hJ ;. as images

of the WKB solutions G° and H? using the above analytic equivalences.
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To represent the solution ¢4 (¢; x) (defined by the hypergeometric series (1.2)) in
the basis (ggrinc) one expresses this hypergeometric function via a contour integral
(in Section 6.1). This is an oscillatory type integral (or a mountain pass integral).
It is evaluated asymptotically as z — oo using well known stationary phase formula
(or the mountain pass formula).

For the degree d = 2 one can write down suitable integral representations for
the basic solutions 6;(s;x) and 63(s;z) near s = 1 —¢ = 0. The corresponding
stationary phase formula allows to represent 6; in the basis (hgrinc) . Because the
relation between the bases (ggrinc) and (hgrinc) is given by a diagonal matrix (at
least formally) it is possible to give new proofs of the formula (1.8). We give two

proofs, one in Section 6.3 and another one in Section 7.2.1.

However, here we must underline that the existence of the integral formulas for
61,2 in the case d = 2 follows from the formula 6;(s) = —s0s¢;(s), which is a
consequence of so-called self-duality for the MZV’s {(2,...,2) (see Egs. (2.8)—(2.9)
and Lemma 3 below).

In the case of odd d > 2 there are no integral formulas for the basic solutions
6, j =1,...,d. But we can find such formulas for corresponding solutions ©;(z)
(to the Bessel type equation) which approximate the solutions 6. Evaluating these
integrals, using the mountain pass formula for large |z|, one finds expansions of the
functions ©; in the basis (H?). Next, one uses the equivalence of the hypergeo-
metric and the Bessel equations near s = 0 to expand §; in the principal WKB
basis (hgrinc) . We do it for the case d = 3.

The WKB solutions G? (respectively H?) are subject to so-called Stokes phe-
nomenon. It relies upon the property that the formal solutions G? are asymptotic
expansions of some genuine analytic solutions G, defined in some sectors S;, but
in intersection of two adjacent sectors the relation between the corresponding bases
is given by so-called Stokes matrix (which is not identical). This explains the di-
vergence of the series defining G and is responsible for the unpleasant fact that
the coefficients in the expansion of the function ®4(y) (approximating 1) given by
the stationary phase formula are not exact. More precisely, only the dominating
terms const-e”l"yl/d7 as |y| — oo and argy is fixed, are correct. Other terms are
determined by an analysis leading to computation of the Stokes matrices. The
same is true for the WKB solutions H and representations of ©;(z) in terms of
(H?) for |z| — oo and fixed arg z. This is done in Section 7.1.

In Section 7.2 we apply the above theory to get a representation

Ay(z) = Zag - F9(x)

for the connection coefficient before 8, in the representation of ¢; in the basis (8;) .
Here F9(x) are functions of WKB type. For d = 2 we prove that the functions F*@
are single valued, i.e. the corresponding Stokes operators are trivial.
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For d = 3 we have

F° = ix73/262waw/\/§wo(x71/2)

which are subject to a nontrivial Stokes phenomenon. Moreover, their monodromy,
as x makes a turn around oo, is nontrivial (due to the factor 2~3/2). This implies
that the function Az(z) is a solution of a meromorphic sixth order linear equation
with irregular singularity at @ = oo (Theorem 2).

Since the function Asz(x) is entire (and holomorphic at = 0) it is quite plausible
that the equation satisfied by F?’s has regular singularity at z = 0. Then this
equation should take the following form

FOUD 4w f V) 4 a2 V) 4 (c5 + car™3) FIID 4 (527! + coa™4) FUD
+ (cra™2 + cgz™?) O 4 (co + cr0273 + c112%) f =0

where c3 = 2 (27r/\/§)3, cg = (277\/3)6 and other coefficients c¢; are computable
(most probably are expressed in an algebraic way via m and /3). But then the
coefficients by = (—1)¥((3,...,3) in the expansion f3 = Y byz®* should satisfy a
recurrent relation, hence all the zeta values ((3,....,3) are expressed via ((3) and
¢(3) would satisfy an algebraic equation with coefficients depending on the ¢;’s.
We plan to calculate the coefficients c; in a separate paper.

Sections 2 of the paper is devoted to presentation of some basic facts about
MZV’s and about their relations with hypergeometric series.

2. MZV’S, POLYLOGARITHMS AND HYPERGEOMETRIC SERIES

The Multiple Zeta Values (MZV’s) ((dy,...,dy) are defined in Eq. (1.4). Any
such quantity has its weight d = d; + ... + di, depth equal k£ and height h =
ﬁ{l td; > 1} .

They form a graded algebra, where the grading is defined by the weight. Indeed,
we can rewrite the product of two infinite sums

(=)= )

in the product {(d1,...,dr)((e1,...,€;) as a finite sum corresponding to different
orderings of the index set {ni,...,ng, my,...,m;}. The corresponding identity is
sometimes called the first shuffle product. For example, we have

(2.1) ¢(2)¢(2) = 2¢(2,2) +¢(4)

which implies ¢(4) = 74/90. It was Euler who used this sort of shuffle relations to
prove that ((2k) = m2* x (rational number).

Important is the problem of calculation of the dimension Dy of the space 34
(over the field Q) generated by the MZV’s of weight d. There exists a conjecture
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(see [Zagl]) that these dimensions satisfy the recursion Dy = Dg_s + Dg_3 (with
Do =1 and Dy =0 for d < 0). This is equivalent to the property

1
d _
ZDdt T2 437

M. Hoffman [Hof] conjectured that the algebra of MZV’s is generated by special
values of the form ((di,...,dy) with d; € {2,3}. This conjecture was recently
proved by F. Brown [Bro]; in the proof some explicit relations between the values
€(2,...,2), ¢(2r +1) and ¢(2,...,2,3,2,...,2) (proved by D. Zagier [Zag2]) are
used.

There exists the following Kontsevich—Drinfeld formula ([KoZa]) for the
MZV’s. Let

(2.2) wo(t) =dt/t, wi(t) =dt/(1—1t)
be two 1—forms. For given d, ..., d; we define the d—form
(2.3) Qay,dy = woltdytovdy) - wWoltdy+..4+dy_y +2)W1 (Fdy 4. 4dy_ +1)

cowo(ta,) - wo(ta)wr(t1);

there are k forms w; with arguments t1,t4, 41, -, tdy+...+d,_,+1. Next, we integrate
it over the simplex {0 <t; < ... <ty <1}:

(2.4) C(dy, ..., dg) :/ Qay,ody -
0<t1<...<tqa<1

For example, we have®

dty dty 1 (1.1, 1
ey dt> —Zn/t ity =" — = ((2).

<ti<to<1 t2 =1

The latter formula is generalized to the generalized polylogarithms

. d dy
(2.6) Lig, .4, (t) = ZO<n1<n2<...<nk It gt

- ogtlg...gtdgtﬂdl,m,dw

It implies another shuffle multiplication. The product
</t1§--~§td§t) (/s1§§sp§t>

3Such integrals appear as coefficients in some knot invariants and in evaluation of some Feyn-
mann integrals in quantum physics.
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of integrals is represented as a finite sum of integrals according to the ordering of
the variables set {t1,...,tq,81,...,84}. For example, we have

(2.7) Lip(t)Liy(t) = ( /Ogtlgtﬁm> (/0’ 16&3153)

B (2/ +/ ) dbydtsdt,
0<ti<ts<ts<t Jo<n<ts<tz<t/) t2(1—13)(1 —t1)

= 2Lijy o(¢) + Lig 1 (1).

The second shuffle formula leads to an interesting shuffle algebra (see [MPH,
Zud1]), but there is no place to describe its details.

The Drinfeld-Kontsevich formula (2.4) leads to the following MZV duality.
Namely, we put s; =1 —tg4,...,8q = 1 —ty; thus w., (t;) = wi_¢;(1 — 54_j41) and
we get

(2.8) ¢(1,...1,mi42,...,1,...,1,m+2)=C(1,...1,n,42,...,1,...,1,n14+2)

where the sequences of 1’s have lengths n; in the left-hand side and m,._;4; in the
right hand side. We observe that the quantities

(2.9) ¢(2,...,2) and ((1,3,...,1,3)
are invariant with respect to the MZV duality. We have also the formula
(2.10) ¢(3) =¢(1,2)

which is proved in many ways in the literature.

There exist interesting generating functions which imply series of relations be-
tween MZV’s. One of them is following (see [BBB]):

k k k
+y* — (v +y)
(2.11) M1y n+l 2.1,...,1) =1 x k
> ey m 2,1, 1) = e g SO S I g
m,n>0 k>2

where the sequence of 1’s has length n.

Some of the generating series are expressed via hypergeometric functions. In the
next example we put

G(d,k,h) = ((dy, ...,

where in the sum the weight d = dy + ... + di, the depth k£ and the height h =
g{i:d; > 1} are fixed and dj > 2. Let also « and § satisfy

atf=z+y, af=z
Then we have the following identity for
B(r,y,2) = Y G(d, k, h)ad=*lyk—h ht
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(see [OhZal):
(2.12) o = xyl_z{1—2F1(a—x,,8—a:;1—x;1)}

1 n n__ n _ Qan
(2.13) = L lew oty na 5" e(n)

n>2

This result was generalized in [AOW] and [Li]. Specializing Eq. (2.13) to 2y = z
one obtains the formula

(214) ZG(d,k’,h)dklkl ZC dklkl
d,k,h
In particular,
(2.15) >y d) =C(d)
di4...+di=d

where the depth k is fixed. For & = 2 the latter identity is known as the Euler
formula.

We note also the following Borwein formula for the generating function f 3(z) =
—¢(1,3)2t + ¢(1,3,1,3)2° — ...

(2.16) fra(@) = fa (x/\@)

which follows from a corresponding identity for generating functions for polyloga-

rithms (see [KoZa|, [BBBL]). This formula was conjectured by D. Zagier in [Zagl].
It was conjectured in [BBB] and proved in [Zhao| that

(2.17) C(3,...,3)=8".¢(1,2,...,1,2)

where
(_1)n1+...+nk

(2.18) C(17§7"‘717§) = Z 2

mam2  amm2
O<mi<ni<...<mpg<ng 17 kg

is so-called alternating Euler sum. The generating function for the latter values

(2.19) fiaoas@) =) C¢(1,2,...,1,2) - (=2
is related with the following sixth order equation:

(1—1)0(1 — t)0td(1 +t)0(1 + t)0stdrg — x°g = 0.
Namely, this equation has two solutions analytic near t = 0 and of the form ¢ = 14
O(x) and @3 = 3 Sty +O(x). Then f15. 1 5(x) = ¢1(1;2) —2%ps(1; 7).
The Zhao'’s result implies that f5 1 35(x) = f3(x/2) =[] (1 — (ﬁ)‘g) .

Some hypergeometric series are also used in irrationality proofs of some zeta
values. Here we refer the reader to the exemplary papers [CFR, Zud2, Hut].
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We finish this section by noticing that some third order linear differential equa-
tions, similar to Eq. (1.1) for d = 3 were considered by F. Beukers with C. Peters
in [BePe] and by S.-T. Yau with B. Lian in [LYau]. In [BePe] the equation

(t* — 34t3 + 12)9%2 + (61> — 153t% + 3t)9%2 + (T1? — 112t + 1)9z + (t — 5)z = 0,
which is directly related with the recurrence used by R. Apéry in his proof of

irrationality of ¢(3) (see [Ap], [vPo]), turns out to be a Picard—Fuchs equation for
periods of some K3 surface. In [LYau] the authors consider equations of the form

((t8)3 —t (i ri (t@)i>> z=0;

they are Picard—Fuchs equations for a one-parameter deformations of K3 surfaces
and are used in the mirror symmetry property for K3 surfaces. However the choice
of parameters r; used in [LYau] is different than in Eq. (1.1)4=3.

3. TWO BASES OF SOLUTIONS

3.1. Basic solutions near t = 0. Recall that we consider Eq. (1.1). The hyper-
geometric function (1.2) is one of the basic solutions. We may represent it as a
series in powers of z¢ with coefficients depending on t. Also other solutions can be
written in the form g = ¢(t; ) = ¢o(t) — ¢1(t)x? + do(t)x?? — ..., where the coeffi-
cient functions satisfy the series of equations: (t9) ¢g = 0 and (t8)* ¢y = T -1
for k > 1. The first equation has d independent solutions which we can choose in
the following form:

1
(d—1)!
(this special choice is justified in Section 5). The other equations are solved as
follows:

(3.2) o (t) = /

It is easy to see that the coefficients ¢y decrease very fast with &k (like 1/k!), so the
obtained solutions are analytic functions in 2% € C\ 0 with known singularities at
z=0.

(3.1) v10(t) =1, w20=1In (xdt) yee s Pd0 = In?1 (mdt)

% dtg—1 dtq

<tgo.<ti<t b1 tg—1 1 —tq

Gr—1(tq).

The above implies that the basic solutions to Eq. (1.1) are of the form

(33) ©j (t, .’E) = SDj,O(t) - QOj’l(t).’Ed + <pj72(t)x2d T ey ] = ]., . ,d,

with ;1 given by the integral recurrence (3.2). They can be rewritten as follows:
1 =1+0(t),
2 = @1 In (2%) + 1o,

(3.4) 3 = %1 In? (2%) 4 1o In(z%) 4 13,

Sod71 = ﬁ(pl lndil (l‘dt) + e + '(/Jd,l ln(l’dt) + wd



164 MICHAL ZAKRZEWSKI AND HENRYK ZOLADEK

where ¢1,1a,...,1q are analytic in ¢ near ¢ = 0. (The above form of the basic
solutions can be explained by the defining equation A% = 0 for the leading exponents
in the solutions ¢ = t* +....)

Of course, for us the principal is the first of these solutions. Using the Drinfeld—
Kontsevich formula (2.6) we find

(t) / dty dty_1 dtg
¥1,2 = ...
O<ty..<ti<t t1 tg—1 1—1tg
o0
dt dtg— tm
-y I, =3 i)
o<ty <ti<t 11 tqg—1 n

i.e. a polylogarithm. Other coefficient functions 1 are also expressed via poly-
logarithms and we have

@1 =1 — Lig(t)z? 4 Liga(t)z®? — ...,

which implies formula (1.5).4

Remark 1. Other solutions s, ...,pq also admit expressions in terms of hy-
pergeometric series. For example, in the case d = 2 we can take the following
perturbation of Eq. (1.1): t{(l — t)0stOrg + x2g} — g = 0 with small parameter

F(1+$+N) .

p (see [ZZ1]). It has the solutions n, and n_,, where n, = N v

F(pu+z,p— x;1 4 2u;t),and therefore
Py = lim (= 1) /21
is a solution to Eq. (1.1)q=o with the logarithmic term (arising from t* ~ 1+pulnt).

Since % ~14+2u(P(1 +x) — ¥(1)), where ¥ denotes the Euler
Psi function and V(1) = —v is the Fuler—Mascheroni constant, it follows that
P =2+ 2(¥(1+2x)+v—1Inx)- ¢ and the analytic part of the solution ¢y equals
o = 4 F(p+ @, — 251+ 2151 u=o-

Moreover, from the expansions ¥(1 + z) = —y + ((2)x — ((3)x? + ((4)z3 — ...
(see [BE1, Eq. 1.17(5)]) and -=— = 1 — 2((2)x — 2¢(4)2® — ... (compare [BE1,

Eq. 1.20(3)] we get $y(1;2) = —<5TL 4 L (2). It implies that the function

Py=0y—x "1

is a solution to Eq. (1.1), independent with ¢1 and such that
cos T

o(l;x) = — .
902( ,Qf) T

4Also other series 1; appearing in the formulas for ¢; are generating functions for some
polylogarithms. For instance, in [ZZ1] it is proved that in the case d = 2 we have @3 =
Lia,... 2(t) ln(:th) - 22?_1 Lio ... 3,...,2(t), where only one index in Li equals 3. After a simple
resummation one finds p2(1; @) = 2f2(z) Ina+ 222 fa(x) {<(3) + ¢(5)x? + {(T)a* + ...} . However
we should not regard the latter identity as something important.

Also the below solutions 6; are expressed via the polylogarithms and In s.
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In the case of higher order equations (d > 2) the perturbation relies on adding a
differential operator of lower order with d — 1 small parameters.

3.2. Basic solutions near ¢ = 1. With the variable s = 1 —t Eq. (1.1) takes the
form
(3.5) 505(1 = 8)s ... (1 — 8)0sg + (=1)%2%g = 0.

Analogously as in Section 3.1 we consider solutions of the form g(1—s) = 6,(s; x)
such that
(36) 0]' = (7$d/(d71))j {9j70(8)+9j71(8)56d+...}7 (j = 1,...,d71),
04 = 9d70(8) + 9d71(8)$d + ...

where
1 .
(37) 9j70 = ﬁ lnj(l—s) = Lil,...,l(s)a (] = 1, . ,d—l), ed)o = 1—d+9d_1,0 lnxd

and
dsy dsy  dsy

3.8 0, S:/ —0; 1.
(3:8) k(%) O<sg.<si<s L—=81 1 —84-1 84 Pkt

It is clear that these solutions are analytic in x € C\ 0 with known singularities at
the origin.

Their behavior near s = 0 is following:

0i(s;z) = % (xd/(d_l)s)j +0(sY) (j=1,...,d—1),
a(s;z) = Bg—1ln(a%s?71) + (1 —d) + O(s).
(compare [ZZ1, ZZ3]).

(3.9)

3.3. Some relations between the two bases. Firstly, we underline the follow-
ing property which follows directly from independence of the two systems ¢ =
(@1,--,0q) and 6 = (61,...,04) " of solutions (see [ZZ3]).

Lemma 1. The matric M = M(x) defined by 0 = M is an analytic function of
x € C\0 with regular singularity at x = 0.

Also the following obvious statement is important in this paper.

Lemma 2. Let
o1(t;x) = A1(x) - 01(1 —t;2) + ... + Ag(x) - 04(1 — t; )

be the representation of p1(t;x) neart = 1 in the basis 6 (with the connection coef-
ficients A;). Then the generating function (1.6) is expressed via the last connection
coefficient,

fa(z) = (1 —d) - Aa(z).
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In the case of standard hypergeometric equation of second order we have the
following property which is proved by direct checking.

Lemma 3. Let d = 2. Then, if ¢(t;x) is a solution to Eq. (1.1), then 0(s;z) =
—s0sp(s;x) is a solution to Eq. (3.5). In particular, we have

91,2(85 95) = —385901,2(55 95)

This lemma will be used below in explanation of the formula (1.8) for fz(z). On
the other side, it has simple explanation in terms of the MZV duality relations.

Together with Eq. (1.1) one can consider the following equation:
(3.10) [(1— )0, " tdg + 2%g = 0.
It has one solution of the form
pr(t;x) =1—Liy12(t)x? + Lit, 121,202 — ...

(where each sequence of 1’s is of length d — 1) and hence ¢1(1;2) = f1,...12(2) =
1-¢(1,...,1,2)z%+. .. is a generating function for multiple zeta values ((1,...,1,2

..1,...,1,2). But the MZV duality (see Eq. (2.8)) implies that the latter numbers
equal ¢(d,...,d). Therefore

o(1;x) = fa(x)

is the generating function for ((d,...,d) from Eq. (1.6). Of course, for d =
2 it is nothing new, because the values ((2,...,2) are fixed under the duality
transformation.

There exists another relation between Egs. (1.1) and (3.10). Namely,

if o(t;x) is a solution to Eq. (1.1) near t =0 then for s =1—1~ 0 the
function 9(s;x) = (s85) " p(s; —x) is a solution to Eq. (3.10) near t =1 but for
the parameter x replaced with —x, i.e. to the equation

(385)‘#1 (1 —5)dsg + (—x)%g =0.

4. WKB SOLUTIONS

Theoretically Eq. (1.1) for large parameter x can be solved using the WKB
method. This means that one represents a solution as a finite sum of terms of the
form

(4.1) ™50 Lo(t) + xa(t)z™ + ...}

In general the series in the above formula are divergent, but this divergence can
be somehow controlled. Below we present three approaches to the WKB solutions
to Eq. (1.1): formal, via normal forms and using the stationary phase formula (in
Section 6).
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The name of the method comes from the names of its authors G. Wentzel [Wen],
H. Kramers [Kr] and L. Brillouin [Bri]. Originally it was used to solve approxi-
mately the Schrodinger equation [Sch], but here we use it to the hypergeometric
equation.

4.1. Testing WKB solutions. These are solution of the form
(4.2) glt;x) = a7e"SOx(t;27h),

where Y is a power series in x7!. Substituting it into equation (1.1) we get
2\ 4 1—t
4.3) ¢ {(1 — )it (S) + 1} x + z?71

4
where S = dS/dt and P; are some differential operators and the first of them is
following:

1—t¢
P1X+---+T73d><:07

.\ d—2 d—1
(4.4) Pix=d- (tS) : {tas X + 5 (t0)*S - X} .
It follows that the ‘action’ S(t), the solution to the ‘Hamilton—Jacobi equation’
N
(4.5) (-0 (8) +1=0,
equals

t dr .
_ — _ J+1/2 I
(4.6) SfJSd(t).fa/O F@D7A(] = )i/ o=t2 j=0,...,d-1,

where ¢ is the root of unity from Eq. (1.3). These d possibilities correspond to d
solutions, which can be expanded as follows

A7) ghua(tiz) = (ow)" e7Se) {xw) R TU } oL

oxr (o) 2
The functions x; satisfy the ‘transport equations’
Pixo =0, Pix1="Paxo;---
where in definition of P; we use S = S4. The first transport equation is easy: we

.\ (1=d)/2
have yg =const- (tSd)

o\ (d-1)/2d
(148) wo- ()

. We choose it in the form

To solve the other equations one introduces the new variable

N PNV
(4.9) U= (”) for d =2 and u = <1t> for odd d > 3;

thus xo(t) = u™ (d = 2) or xo(t) = u'=4/2 (odd d > 3). The following result
was proved in[ZZ1] for d = 2 and in [ZZ3] for d = 3 but it holds in general case.
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Lemma 4. The functions x;(t), j > 1, can be chosen as Laurent polynomials in
u, such that the term with u=1 (respectively u(l_d)/Q) is absent.’

For example, when d = 2 we have

1

Xt = (T = oo [ 20, (o(1+ %) D)

This gives

=

(4.10) x1=— (u"?+3u) /16, x2 =3(3u"® - 5u®)/8%.

A general algebraic formula can be obtained using the functions wg(u) = (2k —
1) w2k~ + (=11 (2k + 1) - w?*~1 k = 1,2,..., which satisfy the recurrent

2o, Twy, = A1 ek Wk } It follows that y(t) =

e _ 31

relations: Twy = —g5 5 ) o

ag kWi (u) + ak g—owg—2(u) + ..., for some coefficients ax; which are calculated
inductively. The latter coefficients grow very fast with k; for instance, we have

arr = (2k — 1) (=1/8)" 71 ((2k — 3)11)2/(2k — 2)!1.

Definition 1. The formal expressions
eade(t) 1—¢ (d—1)/2d
Grest (t; ) ~ (oz) @72 ' < t ) ’

o=¢*/2 j=0,...,d—1, defined in equation (4.7) with the coefficients x;(t)
defined as above (without u=1 or u=D/2 for j > 1) are called the testing WKB
solutions associated with t = 0.

We introduce also another system of testing WK B solutions associated with
s=1—-1t=0:

(411) htest(s ;1;) = 6 (Ux)d/Q —oxSq(l) | gg%st(l—s;x)
(d—1)/2d

N . o—0a(Sa(1)=Sa(1-s)) . i
V—oz-e (1 —s) ’

where £, € St

Above we agree that for 0 < ¢ < 1 and argx = 0 we take:®

+ €Xp Fir /4 SXP + [ Fim/4
~ e —, h*™ ~,/—ex e T ex
Y iz NG ; P VT exp

5The general solution to the system of transport equations contains infinitely many constants,
to each particular solution x;(t) we can add ¢;xo(t) for a constant ¢;. It the case of Schrédinger
equation one avoids analogous problem of arbitrary constants of integration by assuming that the
wave functions (representing bound states of a quantum system) vanish at infinity; that restriction
leads to so-called Born—Sommerfeld quantization condition (see [Sch]).

6In [ZZ1] the notations g0 and g; for gi., and gtebt, i = e™/2 are used. In [ZZ3] one uses
the notations gg , g, g§ for g, 0 = —1,e = €e'™/3 €. Also for hg.s: analogous notations are used.
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for d = 2 and

s  exp

~ == hT ~+Texp, ht=¢&/rexp, h°~ eyTexp,
ox
(0 = —1,¢,€) for d = 3.

4.2. Formal reduction to normal form. Here we present an alternative way
to derive WKB type solutions to equations with a parameter like Eq. (1.1). The
obtained basic WKB solutions g7, differ from the testing WKB solutions gg.
from Definition 1 by factors which depends on x. There are reasons to regard the
new solutions are more natural than the testing solution.

In the presentation we describe only the simplest case d = 2. Here we will use
the notations g= (see Note 6).

Putting
(4.12) g1=9, g2=g/
we rewrite Eq. (1.1) in form of the following first order system

i) =2eo(2)

where

A=xzA(t) + Ao(t), Al(l/t(z?_l) (1))’ A0<8 _(1)/75>'

The normal form of such system is a diagonal (or independent) system obtained
by means of a formal linear change which depends on t.

The first step is the diagonalization of the matrix A;(t) with the eigenvalues

(4.13) AE(t) = 4i/\/t(1 —t) = +i - So(t).

We put

(4.14) X"":)\i’_(t)gl + go, X_:/\l_(t)gl+gz

and we get

(4.15) Xt =N 0t =g (F ) X —a (v ) X
X =nOex =3 (F ) X4 (2 ) X

The general theory says that such system can be diagonalized by means of an
infinite series of ‘shearing’ transformations. Let us apply some initial changes, in
order to compare the obtained (partial) normal form with the results of the previous
and next subsections. We put

by b
(4.16) X*:Xf+<;+3;+...)X1, X*:(%—k%—k...)anLXf,

where b;, c; depend on ¢, and we expect to obtain the following separated system

(4.17) Xf =N (Ba)XT, X7 = A (o)X,
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Mt z) = Nz + A @) + 235 (e + ..

The resulted system of equations onto bj, c;, )\;-t is easily solved; moreover, in
algebraic way. Using the variable u = (¢/(1 — t))1/4 (see Eq. (4.9)) we get by =
—ep = —i/81 —t)? = —i(1 + ut)/8u, by = o = (1—2t)/32t(1 — t) =
(1—u) /32ut and AF = 1 (f - —) A = Fi/3200(1— )2 = Fi(l +

ut)3/32u8, AL, = (2t — 1)/128t2(1 — 1)? = (u* — 1)(1 + u*)*/128u8.

General solutions to the system (4.17) are of the form
(4.18) X = K+%exp{ﬁ(u2—#)—ﬁ(u‘l—FQ—&-ufﬂ)—F...},

X1 = K- fmgrs oxp {55 (0 = 32) = s (0 + 24 50) +-- ],

with arbitrary constants K4 (which may depend on z). Substituting this to Eq.
(4.16) and then to g = 55 (X — X ~) (see Eq. (4.14)) one finds a general solution
to Eq. (1.1) in the form

9= Kt Gilorm (t:2) + K- gnom (),
where
(4.19) g (i) = (1 + (5/256)x 2 +...) - giy (t; )
and g are the testing WKB solutions (see Definition 1 and Eq. (4.7)).
For general degree d > 2 we have g; = g,g2 = 09/, ...,g9q = 0¥ 1g/x%~1 in an

analogue of Eqs. (4.12), XY = 0Sy(t), 0 = ¢JT1/2, j =0,...,d — 1, in Eq. (4.13)
and we finally obtain the diagonal system

(4.20) X9 =X\(t2) X7, A=Az + X))+ A7 () ...,
with solutions X7 = K, - exp fo (7; 2)dr, which imply the formula
(4.21) 9= Ko glom(t;®)

for a general (formal) solution to the hypergeometric equation (1.1).

Definition 2. The solutions g° are called the normal WKB solutions associ-
ated with the pointt = 0. Corresponding normal WKB solutions associated
with the point s = 1—1t =0 are h%, .. (s;2) = & (aaz)d/2 e=ow85a()go (1 — s;1)
(where &4 is the same as in Definition 1).

The normal WKB solutions are also defined uniquely, because the reduction
to the normal form is unique and essentially algebraic. They seem to be more
important than the testing WKB solutions gg.., because we can show that they are
represented by analytic functions in some sectorial domains (due to some Birkhoff’s
theorem discussed below).

Note also that the normal form system (4.20) is more natural than the WKB
solutions g7, because the latter involve the initial condition S4(0) = 0.
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Remark 2. The relation between ¢9,,.m and go, s of the form

g?},orm(t;x) = C’Z;orm(xil) ' g‘?est(t;z)v

where CGo(x71) = 14+ O(z™Y) are formal series. It seems that all the series
Corm(x™Y) are the same for any index o and depend on x~%. This is proved for
d =2 in [ZZ1]. Also from Eq. (4.19) it follows that these series are nontrivial.

4.3. Analytic normalization. We have seen that the process (which is standard)
of successive reduction of Eq. (4.15) to the normal (diagonal) form is essentially
algebraic. It is also unique. Unfortunately, it is divergent.

The problem of analytic interpretation of the WKB method is highly nontrivial.
There exist known results about WKB functions which are analytic in some rather
special domains and have the same asymptotic expansions as the formal WKB
series. But those analytic functions undergo dramatic changes when the domains
are changed; this is the famous Stokes phenomenon studied in Section 7.

Additional complication arises from the dependence of two variables: = (which
is large) and t (which is bounded). In a traditional approach, used mostly by the
physicists [He, BNR], the parameter x is real and the variable ¢t may vary in some
complex domain. In that domain there exist so-called Stokes lines which separate
domains of uniqueness of the WKB functions. Several Stokes lines meet at so-called
turning points, which are the ramification points of the derivative S(t) = dS/dt
of the ‘action’ (like S(t) = 1/q(t) for the Schrédinger equation ¢ = —22¢(t)1). In
our situation, the fact that S (t) is infinite at ¢ = 0 and ¢ = 1 causes additional
complication.

Since our principal aim is to study analytic properties of the connection coeffi-
cient A4(x) in Lemma 2, we should rather consider complex x, while ¢ can stay real.
When one allows argz to vary the Stokes lines also should vary in a controllable
way (see [DePh]). But this controlling is rather troublesome and we prefer to use
our own method.

One ingredient of this method is exemplified in Theorem 1 below (we refer the
reader to our original work [ZZ2]). It allows to treat analytically WKB functions
in two domains in C x C = {(t,z)} : Up X Vo and Uy X Vs, where Uy are
neighborhoods of t = 0,1 and Vs = (C,00). In these domains we are able to
control perfectly the Stokes lines and their z—dependence (see Section 7).

Another ingredient (realized in this section) is an analogue of a theorem due
to G. D. Birkhoff [Bir] about WKB functions analytic in domains like W x S
where W is a neighborhood of the ‘interior’ of the segment [0, 1] in the ¢—plane
and S is a sector in the z—plane. The above domains have non-empty suitable
intersections which allows to provide an analytic realization of formal WKB type
series for solutions of differential equations and of the connection coefficient Ag(x).
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The reduction (4.16) is divergent (as a power series in z~') and the WKB
solutions g* are only formal solutions. G. Birkhoff [Bir] was the first who proved
that such a system can be diagonalized analytically in some sectorial domains.
Below we present a scheme of the Birkhoff’s proof in the case d = 2.

We apply a change
(4.22) Xt =X+vR2mXx;, X =V2OX{ + X,
which should transform system (4.15), i.e

d X+ Bll BlQ X+
i(3) = (o ) ()
to the diagonal form

(4.23) X+t =D,(t)X{, X[ =D_(t)X;.
We get D, = Bl + B12v2l D = B?'V12 + B?? and two independent Riccati
equations

V12 — Bllv12 _ V12322 + 312 _ V12321vl2

VQl — B22v21 _ V21B11 T B21 _ V21312v21.
The latter differential equations are rewritten in form of the following integral
equations:

(4.24)  VE(@) = / ePO=PE) [ B2(7) — V2(7) B2 (r)V'2(r)} dr,
T (t)

(4.25) V(1) :/ P (M =P(1) (B (r) = V2 (r)B2(r)V2\ (1)} dr,
Fg(t)

t) = fOt(BH(L) — B%(1))dr = 2ixS3(t) + . ... Here T'y(t) and T'y(t) are some well
chosen paths in the 7—plane.

One would like to treat Eqs. (4.24)—(4.25) as fixed point equations in suitable
functional spaces. For this the nonlinear operators defined by the right-hand sides
should be contracting, at least bounded (see [Was, Zo3]).

The crucial element in the proof of the latter property is the possibility to
estimate the factors e (P =P(7) ~ exp {+2ix(S5(t) — So(7))} . Thus, if ¢ € (0,1)
is real, then for Im 2z > 0 we take the integration paths as segments I'; = [0, ¢] and
Iy =[1,t]; when Imz < 0 we take I'y = [1,¢] and T'y = [0,¢].

But the entries B¥(t) of the matrix B have poles at t = 0 and ¢ = 1. Moreover,
we want to extend the range of argx and to allow complex values of t. We choose
three small constants o > 0, 8 > 0 and 0 < 79 << (8 and define the following
domains: W = {t =t1 +ita: 8<t1<1—p0, [to| <Bt1(l1—1t1)} C C (a neigh-
borhood of the open segment (3,1 — 3) C R) and D,, Dy C C? (‘up’ and ‘down’)
by the conditions

ImzSy(t), Imz(S2(1) — S2(t)) > —a, teW (for D,),
Im S5 (t), Imx (S2(1) — Sa2(t)) < a,teW (for Dy).
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If (t,z) € D, then the contour I'; begins at 7 = 7y and ends at 7 = ¢ and the
path T'y begins at 7 = 1 — 79 and ends at 7 = ¢ and with Imz(S(¢) — S(7)) < 0.
For (t,z) € Dy the choice of the contours is opposite.

Solving the integral equations in the domains D,, and D, one obtains analytic

solutions g (t; ) and gfjt (t; z) respectively. They have the same formal asymptotic
expansions as the principal WKB solutions g* (¢; ).

We note the conjugation symmetry of the above construction:
g9i (2) = g7 (52), gu (t2) = gf (£ 2).

In the case of general degree d > 2 the corresponding system of Riccati type
equations consists of d(d — 1) equations for the off-diagonal entries V°(¢) of the
matrix V(¢) (with 1’s on the diagonal) such that X = VX;. The corresponding
integral equations take the form

(4.26) VoLt = [l oeSOSaD P V().
roe

Here there are 2d domains D1 2,Da 3, . . ., D241 being neighborhoods of the sectorial
sets [8,1 — B] X Sk k+1, where Sk k41, k = 1,...2d (and 2d + 1 = 1), are closed
sectors defined by division of a neighborhood of 2 = co by the lines argx = jr/d,
j=0,...,d—1. One obtains solutions g7 ; ., (t;z) analytic in the domains Dy j1.
From the construction they satisfy the following symmetry properties:

(4.27) Grropis(tisz) = gp% (6 2),
(4.28) ng,kJrl(t?x) = ggd7k+1,2d7k+2(f;i')7
<:e27ri/d.

Let us summarize the results of this subsection in the following

Proposition 1. For d > 2 there exist 2d systems of solutions (g,‘€77,€_|r1)7 k =
1,...,2d, analytic in the domains D p+1 (defined above) whose formal expansions
are the same as for the normal WKB solutions g9, from Definition 2. They
satisfy relations (4.27) and (4.28).

For d = 2 there exist two such systems (g3) = (975) and (93) = (93,) analytic
in the domains Dy, = D12 and Dg =Dy ;.

5. BESSEL APPROXIMATIONS

5.1. Bessel type equations and their basic solutions. Consider series (1.2)
when z — oo and

y::vdt
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is finite. Then we get

o0

(5.1) o1 (t;2) = D1 (y E:

71

=0 Fd*l(]-v‘",]-;_y)»

i.e. a confluent hypergeometric function. For d = 2 the function ®; is expressed
via a Bessel function:”

(5.2) ®1(y)|a=2 = Jo(2\/y).

The function ®; satisfies a special confluent hypergeometric equation, which we
call the Bessel type equation:

(5.3) 9y (y9,) G + G = 0.

The other independent solutions to Eq. (5.3) are

=®4(y) lgy+‘1/2(y)7
D3(t) = %@1 In“y + Uslny + U3(y),

Sa(y) = @ "y + e Ve Py 4 4 W(y)

(where U, are some entire functions), they approximate the solutions ;.

Of course, Eq. (5.3) is obtained from Eq. (1.1) by the change t = y/x¢, 9, =
xdf}‘y and taking limit as z — oo. We shall do analogous change with Eq. (3.5) by
taking x large and

5 — pdgd—1

finite. The obtained Bessel type equation is following:
d _1 d=2 d
(5.5) (1—d)?. 7 (zd—laz) H+H=0.

It has basic solutions of the form

0;(2) = 52/ VF;(2) = 52V (14 0(2), (j=1,....d~ 1),

(56)  gu(2) = By_r(2)Inz + Za(2),

where Fjj(z) are some concrete confluent hypergeometric series and =4 is an entire
function.

For d = 2 we have

(5.7) O1la=2 = V2J1(2V/2)

"Recall that the Bessel function with index p equals Ju(w) =372, F(u%yl)n' (% )2n+”
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and for d = 3 we have

(5.8) ©O1|g=3 = Vz <1 + HZ::I 2n+ 1)7(271 — 1)”> =z F» (Oé,ﬁQ %) )
(5.9) Oslucs = zgm =20 By (1,8:2)

wherea=d=n+1/2,=n—-1/2,y=n+ 1.

5.2. Formal and analytic WKB solutions. The Bessel type equation (5.3) has
irregular singular point at y = oo and equation (5.5) has irregular singular point
at z = 0o. Any linear meromorphic differential equation with an irregular singular
point has uniquely defined (up to a multiplicative constants) formal solution which
we call the WKB solutions.

For Eq. (5.3) the WKB solutions are of the form

- 7 doyt/ ay as d—1
(5:10) &7(y) = (Uyl/d) o {1 B (o1/4)>? _} T
oy

and the WKB solutions for Eq. (5.5) are following:

H(z) = - b b
5.1 = _ . 1/d(d/(1 d)a’zl/d 1 1 2
(5.11) (2) ozl/de + 74 ( 1/d)2 7

where 0 = ¢7t1/2 5 =0,...,d—1, (as usual), the choice of the square root v/ —oz1/4
is defined in Definition 1 and the coefficients are computed recursively.

The dependence of the above functions on the roots y'/¢ and z'/? is not useful
in calculations. Often we will use the variables

(5.12) v=y"l w=2z1

and denote corresponding WKB solutions as

(5.13) G (v) = -G (v*), H(w) = H (w?).
They satisfy the following Bessel type equations:

(5.14) (00,)4G +d* -G = 0,
(5.15) (1/d —1)* wat (wd;—llaw)dfl +dl-H = o0

Like in Section 4.2 we can transform each of the Egs. (5.14)—(5.15) to a corre-
sponding linear system which is next diagonalized using shearing transformations.
The obtained diagonal system has basic solutions which must equal the WKB so-
lutions from Eqs. (5.13). This formal reduction of the Bessel type equations to
the normal form is in complete agreement with the analogous reduction of the
hypergeometric equation.
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But when we want to obtain analytic normal forms, then one encounters some
differences with what is done in Section 4.3. For example, in the case of Eq. (5.14)
one arrives to an analogue of Eq. (4.26), i.e.

Vor(v) = / eNo=P =T por (7, V (1))dr,
Tor

but now the paths I'?? = T'?(v) of integration are chosen rather differently.

Consider sectors Sy, ..., Saq with angles 2m/d — ¢ (§ > 0 small) and with the
bisectrices argv = 0,7/d, ..., (d — 1)m/d. These bisectrices R; correspond to the
situations when Im (6 — p)v = 0 (for some o and p) and are called the rays of
division associated with the pair (o, p).

With given unordered pair {c, p} two rays of division R; and R ;44 are associated
(here j+d is taken mod 2d). Consider larger sectors S;_q/9)U. .. US;U...US; 14/2
and Sjyq—[a/21U- . -USj1aU. .. US4y (q/2) With the above rays as their bisectrices;
they cover a neighborhood of v = oco. For v € ... US; U... (respectively v €
.. US43 U...) the path T'7?(v) runs parallel to the ray R; from 7 = oo to 7 = v.
Due to the fact that the factors e““—2)7 in the corresponding integral equations
are bounded for 7 € T'7?(v) the solutions to the integral equations exist and are
analytic in the sectors S.

We denote the analytic solutions in the sectors &; obtained above by
(5.16) GI(v), vES;, j=1,...,6.

They are formally equivalent to the formal WKB solutions form Egs. (5.10)—(5.13).
(But for d = 2 we have only two sectors S; = S, (right)and So = §; (left) with
bisectrices R1 = {argv = 0} and Ry = {argv = 7} and angles 2m — ¢ and two sets

of solutions G,(v).

T7
Analogously we obtain systems of analytic solutions to Eq. (5.15):

(5.17) HY(w), weS;, j=1,...,2d.

Remark 3. Functions (5.16) and (5.17) were constructed by solving corresponding
integral equations. But there exist explicit integral formulas for analytic WKB solu-
tions to Bessel type equations (and to general hypergeometric confluent equations)
due to A. Duval and C. Mitschi [DuMi] (see also [ZZ3]). For example, for d = 3
the following Mellin—Barnes integral

Gon) = 7 [ T
where v is a path from T = —ioco to T = +ioco which leaves the poles T =1,2,... of
the Gamma function from the right, defines a solution to the Bessel type equation
(5.8) for d = 3. (The function G, is a particular case of the so-called Meijer
G-functions, [Me| and [BE1]). It turns out that Gp,,(y) is analytic in the sec-
tor {—7r —e<argy/ <7+ s} and has the form G, = e*3y1/3y*1/390(y*1/3)
(like G™).
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Moreover other WKB solutions can be taken in the form
. eyl/3 _ o € cyl/3 —
Gom(y) = vy 1/390(‘53/ 1/3)7 pm(y) = Yy 1/690(611 1/3)

(where the notations —,€,€ are like in Note 6). The new WKB solutions Hp,,,,
HS HS ) to the Bessel type equation (3.7) are defined similarly, via the following
Mellin—Barnes integral:

Hpa(2) = 5 [ D= 701/2~ P)N(=7)(~2/8)"dr

= €%Z1/321/691(2_1/3).

Also for other degrees d # 3 Duval and Mitschi define WKB solutions G%,,, and
H7,, analytic in suitable sectors about infinity.

Finally, we note that analyticity of the WKB solutions in sectors can be proved
in still another way, using the fact that the formal WKB solutions are defined via
Gevrey type series, by applying corresponding Borel and Laplace transforms. We
refer the reader to the books of W. Balser [Bal] and J.-P. Ramis [Ram].

5.3. Equivalences of hypergeometric equation and its Bessel approxima-
tions. Importance of the above approximations can be seen from the following
result, which is a special case of a more general theorem proved in [ZZ2, Theorem
2]. Let & = (®4,...,P4), © = (04,...,04) denote the bases (5.1)-(5.4) and (5.6)
and ¢, 0 be corresponding bases from Section 3.

Theorem 1. There exist matriz-valued functions Ho(t) = I + O(t) and Hi(s) =
I+ O(s), defined in a neighborhood of t =0 and s =1 —t =10 in C and analytic
there, such that

QDHO =, 0H, = 0.

Proof. Let

©1 ce ©d P, C Dy
R U o te, ... 9y,
be the fundamental matrices associated with the bases ¢ (see Eq. (3.4)) and ® and
0,®; = 20, ®; means differentiation with respect to the time ¢. Then we have

Ho(t;z) = Fy ' Go.

Analogously the fundamental matrices F; and G; associated with the fundamental
systems 6 and © define the matrix-valued function

Hi(s;z) = ]—'flgl.

It is clear from Section 3 that the matrices Fo(t,x) and Go(¢,z) are analytic in
(t,x) for t € (C\0,0) and x € C\0. It was observed in [ZZ2] that the matrices Fy
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and Gy have the same monodromy properties as ¢ turns around 0 and as x turns

around 0 (or around oco) and have the same singularities at ¢t = 0 and at = = 0.

Moreover, from the analysis in Sections 6 and 7 it follows that these matrices have

almost the same asymptotic as © — o0, i.e. in sectorial domains. Therefore the

matrix valued function Hj is single valued in the both variables and is bounded

at possible singularities: ¢ = 0, z = 0 and x = oo. It follows that it is analytic in
€ (C,0) and constant in = € C.

The same arguments prove that #;(s; ) is holomorphic in s € (C,0) and con-
stant in x € C. 1

Theorem 2 from [ZZ2] is a generalization of a theorem of W. Wasow from [Was]
about reduction of equations of the form d?z/dt* = {N?ta(t) + \b(t,1/\)} z, a(

1 (with analytic germs a and b and large \) to the Airy equation 9%y = Ty,
T = tA\?/3, which is also of the Bessel type. In [2Z2] a slightly weaker result was
proved; namely, it was stated that Ho (¢, x) is analyticin t € (C,0) and 27! € (C,0).

Definition 3. The functions gg ;.. = GHy"' are called the principal WKB

solutions neart = 0 to hypergeometric equations (1.1) and the functions A vine =

H"’;’-l1 are called the principal WKB solutions near s =1—t = 0 to the same
equation.

Remark 4. Since the WKB solutions G° to FEq. (5.3) and H° to Eq. (5.5)
are formal the principal WKB solutions g7 ;.. and hg,. are also only formal.
Their relations with the formal and normal WKB solutions from Definition 1 and
Definition 2 are of the form

(518) gprinc = Kgrlnc( 71) ’ ggesw hprmc = Lgrlnc( 71/(d71)) hgest
for some series K (1) = 1+0(z™") and L, (x=/(7V) = 140(z=1/4=D),
Here L7, s a series in powers of == because the hypergeometric equation

(1.1) is a perturbation of the Bessel type equation (5.5) and in the perturbation we
encounter powers of s = zl/(d_l)m_d/(d_l),' in fact we solve it by solving a system
of equations in variations (see [Z73]).

Therefore

o

K
(5.19) 1—s) = gd LPHHC (Jm)_d/2 eo®Sa(l)  po (s).

o
gprinc( princ

princ

We have not calculated the series Ky, (x7") and L7, (1), but there is no
reason to expect that they are equal But Eq. (4.19) above and Lemma & below
suggest that probably K, (x7") = L7, (7" = Crorm(72) = 1+ (5/256)2 >

. ford=2.

On the other hand, if we choose analytic versions (i.e. in some sectors) of the
formal WKB solutions to Egs. (5.8) and (5.5), like in Section 5.2, then by applying
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the operators ”Hal and Hfl to them we obtain analytic principal WKB solutions
in corresponding domains.

Moreover, the domain of definition of Ho(t) is not limited to a small neighbor-
hood of t = 0. Ho is analytic in a disc {|t| <1 —eo} for small €g. Similarly Hi(s)
is analytic in {|s| <1 —eo}. These two domains have quite big intersection.

Finally, because there exist analytic (in sectors) versions G7 and HY of the

formal WKB functions, application of ’Hal and ’Hfl to them gives corresponding
analytic principal WKB solution to the hypergeometric equation.

Definition 4. We introduce the following WKB type formal functions
g inel — 852
Fo'(x) _ gprl:c( ' )
h’princ(s’ 33)
Here wa(x_l/(d_l)) prmc(1/1’.)/Lpr1nc(1/$1/(d_1)) and
Sy(1) = 7 and Ss3(1) = 27 /V/3.

_ 5(;1 (o,x)*d/Q eode(l)wU(x—l/(d—l)).

We have
(5.20) Ft = %eii”wi(l/w),
e—2xom/V/3
(5.21) O (z*/?),
for d = 2 and d = 3 respectively; in Eq. (5.21) & = + for ¢ = ¢,€ and = — for
o=-—1.

In the case d = 3 the series w?(x~'/?) are not single valued. We can write
instead
e300 = £vE - 2720 (27 ) 4+ 22w (7).
Then we have six WKB type functions
(5.22) Fg = a=3/2200m/V3,9

In the case of odd d > 3 there are d(d — 1) similar WKB functions.

6. INTEGRAL REPRESENTATIONS AND STATIONARY PHASE FORMULA

6.1. Integral formulas. Some of the series defining solutions of hypergeometric
and Bessel type equations have integral representations. We begin with the stan-
dard representation of the Bessel functions:

Jo(w) = 5& ]{ exp(éj(u—l/u)) d?_l
u|=1

— ™ o —ino
= 5=/ _exp(iwsina)e do.

(6.1)

This formula was obtained by Bessel and can be found in the literature (see
[BE2, GM]). Let us recall its simple proof whose argumentation can be used in
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more general situations. The series S oo (—1)™(w?/4)™*"/2 /(m 4 n)!m! which
defines J, (w) admits the following residue representation:

TeSu=0 un1+1 (Z (Uﬂir/j)m) (Z (_WT{jU)m) .

Next we use the Cauchy formula.

For a non-integer index p we have the following Schlifli representation:

Ju(w) :% /7r exp (i(wsina — pa)) do

(6.2)
_ sinmp

/OO exp (—wsinh 8 — pfB) dg.
0

T
This follows from some generalization of the residuum formula for J,, with integer n.
We have J,(w) = 5= [ exp (3w (u— 1/u)) u=#~du where C is a contour which
begins and ends at u = —oo and surrounds u = 0 in positive direction. Next the
contour C' is deformed to two half-lines along (—oo, —1) (parametrized by —e?)
and the circle |u| = 1. For more details we refer reader to [BE2, Eq. 7.3(9)].
(In the original Schlafli formula the first integral in Eq. (6.2) is replaced with
L [y cos (wsino — pav) dar.)

Now we are ready to present a multidimensional contour integrals. We have
d—1 d—1 d—2
1 , dQ;
6.3 D)= — _yl/d ip, J
(6.3) 1 (27ri ) / / exp { —y ; ¢ P 1:[0 0,
|Qol=..=|Qa-2|=1 7= J=

2mi/d

for the generalized Bessel function (5.1). Here and below ¢ = e and

Py =Qou, P = QlQal/(d_l)y B Qd—2Q(;,1é2 - 81/(
Py = Q7YQ QY

thus HPj =1.

For the hypergeometric function (1.2) we get the following formula:

d—1)
(6.4) 7

T
d—1 j d—1

d J
! 1/dp \° dQ);
(65) (,01:(%) // H(l—t Pj) HQ]
|Qol=...=|Qu—z|=1 \I=0 7=0
In the proof one uses the expansions
—a F(a/ + n)
1-— = BT on
1-2) I'(a)n! ‘

and
I'(ay +n) T(ag+n),,

aFa—1(ay,...,aq;1,...,15t) = Tlan! " T(ag)n!
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Using the Schléfli formula (6.2) we can prove the formula (with the Euler—Mascheroni
constant )

(P2 4+ 29P1) |4=2 = = [T aexp (2i\/ysina)da

-2 fooo exp (—2\/§sinh ﬁ) dg
for another solution lim, o £ {J,(2/y) — J_,(2,/9)} to the Bessel type equation
(5.3) for = 2.

The Schlafli formula admits a generalization to the case of hypergeometric inte-
grals (see [ZZ1]). Tt allows to prove the following formula for the solution @, (for
d = 2) from Remark 1:

(6.6)

l—ﬂv 1—V/tv dv

6.7) Pola=2 = 557 Jiuj=1 (17\/2/1;21:1“ (v?(lfﬁm) v

1/\/7: l—ﬁv sin T 1—V/tv dv
-/ (17\/2/0) { = ln(vz(l,\/g/v))+30057737}7~

Unfortunately, we do not have integral formulas for the basic solutions ; to the
hypergeometric equation near 1 — ¢t = 0 for odd d > 2. (For d = 2 we can use the
duality formula from Lemma 3.) The reason for this is that the recurrence relations
for the coefficients in the series defining 6; are of length greater than two.

Fortunately, we can find such formulas for the solutions ©; to the Bessel type
equation (5.5).

In the case d = 2 the duality relation implies
Gj(z)|d:2 = 72(92@]‘(2), ] = 1,2,
and, in particular,

01(2)]d=2 = V2J1(2/2).

For d = 3 we have the following formulas (for the proofs see [2Z3]):

(6.8) O14=3 = _Zz;/rg _ _ _
. S U—iﬁ ffﬁ dasinh (21/36“1/2) exp (%zl/3e—m7-) e—io/2,
21/3 ™ 1 . 9 1 L ] )
(6.9) O2fa=3 = or cosh (z /3¢l )exp (22 /3e_m) e "““da.

In Eq. (6.8) C" is a contour which begins and ends at 7 = 0 and surrounds 7 = 1 in
positive direction. (The third solution ©3]4=3 to the Bessel like equation (5.5) can
be found by taking the perturbation 8 {2%9,v/20.v/20. — v(v —1/2)(v — 1)} H —
zH = 0 and passing to the limit as v — 0 with suitable combination of the basic
solutions.)



182 MICHAL ZAKRZEWSKI AND HENRYK ZOLADEK

6.2. The stationary phase formula. Recall (see [He]) that the stationary phase
formula concerns integrals of the type

(6.10) I\ = /e)“’b(“)x(a)dka
over a k—dimensional manifold when |A| — co. Assuming that the ‘phase’ ¢(«) has
finitely many critical points aq, ..., a,, which are Morsean, one has the following

asymptotic stationary phase formula:

1 o\ /2
6.11 I(\) ~ ; erole) () :
(6:11) )~ (a0 s :
Usually, in applications, the large parameter A is imaginary and the phase ¢ is a
real function; then the integral in Eq. (6.10) is called the oscillating integral.
Otherwise the name mountain pass integral is sometimes used; with such case
we deal in this paper. In the case of real x and ¢ the integrals (6.3), (6.5)4=2,
(6.6) and (6.7) are oscillating integrals and for d > 2 we deal with mountain pass
integrals.

We want to apply formula (6.11) to the above integrals with large |y| or |z|.
However here the large parameter A is not purely imaginary and the phase ¢ is not
a real function. So we shall assume that A lies in some sector S (in the complex
plane) with vertex at co. Then the sum in Eq. (6.11) becomes restricted to those
critical points «; for which the function

z = exp {AD*¢(c;)(2,2) }
is integrable, i.e. the eigenvalues y; of the Hessian D?¢(«;) satisfy
Re(Ap;) <0.

We shall also deal with integrals of the type

B1
(6.12) I = [ Op)as,
Bo
where the ‘phase’ function ¢ is noncritical. Assume that

(6.13) © <0, x(B)=(B8—PB)" "D+ lo.t),

where the function x1(8) = D + l.o.t. is analytic near fBy. In this case, for large A,
with Re A > 0, and Reo > 0 we have

(6.14) J(A) ~ D -T(o) - exp{Ap(Bo)} - (=A¢'(Bo)) ™7

(see [ZZ3, Lemma 3.7]). Moreover, this formula holds also when Reo < 0 and is
not integer, but the integral in Eq. (6.12) is replaced by (1 — e=2™?)~! times an
integral along a contour which surrounds the point 5y in negative direction.

The aim of this subsection is to derive initial terms of the asymptotic expansions
of the functions expressed via the above contour integrals.
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Let us consider firstly the simplest case of the oscillating integral ®1(y)|4—2 =
% Jexp (22\/§ sin a) dar. The phase function ¢(«) = 2isin o has two critical points
a1 = § with ¢(a1) = 24, ¢"(a1) = —2i and ay = —F with ¢(az) = —2i, ¢"(az) =
2i. Therefore we obtain the following (well known) asymptotic formula for y — oo :

(6.15) By |ges ~ (ei(2\/z?—7r/4) I e—i(2\/17—7r/4)) .

1
2y/Tyt/4

In the right-hand side of Eq. (6.6) the second integral can be ignored, because
it decreases like y—1/2 (without any exponent). The first integral in that formula
is an oscillating integrals and standard application of Eq. (6.11) gives (for y — o)

ﬁ 7 - —1 -7
(6.16) (®y + 29P1) |g—o ~ o173 (e @VT-7/4) _ p—i(2yF /4)) ,

In the case of the oscillating integral (6.3)4>3 the phase equals

$(Q) =Y P
Its critical points are calculated using a Lagrange multiplier x corresponding to the
restriction HPJ- = 1. One finds P; = k¢ J, where k¢ = —1. This gives d points
P® k=0,..,d-1, Pj(k) = ¢F=9+1/2 and to d! critical points Q) (when we
take into account choices of the roots Qé/(d_l), ceey ;/_22. Next, one substitutes
P = Pj(k)eipj and Q; = Qy)eiqf, where p; and g¢; satisfy definite linear relations
(see Eqs. (6.4)). The Taylor expansion of the phase at Q) takes the form ¢(q) =

qS(Q(l)) + % > ag@)nqmqn + ... and the corresponding contribution in the stationary
phase formula takes the form

(2m)* /2 (det AD)

In the case d = 3 we obtain, as y — oo,

1 636yl/3 €3€y1/3 e_3y1/3 '
6.17 [} _3 v — 271'/3.
(6.17) 1]d=3 3yl ( c + c + 1 , €=¢€

(We have not finished calculations for d > 3.)
For the integral (6.5) the phase

$(Q) = JIn(1-t"p)

—1/2 N
ey 1@ L ya-d)/ad o 40) (a%)

also has d! critical points.

For d = 2 the critical points in Eq. (6.5)4—2 are QT = vVt +iy/s, s = 1 —t,
and ¢(QFe') = +iSy(t) F iu?¢®, u = {/t/s. Therefore the leading term of the
oscillatory integral corresponding to the critical point a4 equals

. 1 1
+izS(t) <2 2
e — [ ex 1TU dg ~ ———
27r/ p(F a)dq 2un/Eimx

eiing (t) .
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We obtain

1 eisz(t) e—ixSQ(t)
6.18 —o + A
( ) Pili=2 2ﬁ{ uViz u\/ —ix }

For d = 3 the critical points are Q%%, 0 = —1, ¢, €, such that

— 1/3
ot 1 ey Jute@ (1L / s=1-t
! t1/3 — 5s1/3’ 2 u—+eq’ s ’ '

Here the absolute values of Q;-”i are different from 1, so it is rather a mountain
pass integral than an oscillating integral. We deform the initial integration contour,
the torus Top = {Q1 = €', Q2 = €# : 0 < a,8 < 27}, to another contour T
such that it passes through the critical points and near these points we can write
Q1 = Q7Fel | Qy = QT e (see [ZZ3] for details).

One has ¢(Q%*F) = 0.53(t) and the corresponding matrix A% defining the qua-

dratic terms equals
3 -3
_Uu<4(2—ou) z2au>,

i?au 24 ou

with the determinant 3 (ou)?.

The leading part of the hypergeometric function (6.3)4=3 arising from a neigh-
borhood of the point Q7* for large |z| equals e7*3() times

2 1/3
i —z(Aq,q)/2 2, _ 1 1-t / i
e d“q = X .
s 27/3 t ox

It agrees, up to a constant, with the first term in the testing WKB solution gZ. (¢; x)
given in Definition 1. We get the following formal expansion as x — oo :

(6.19)

—Uux EUT Eux

1 67133@) eECESg(t) 66153(15)
=3 ~ + + .
<P1|d 3 27r\/§{ }

Let us present the corresponding stationary phase expansions for the functions
©;(2)|a=2,3. For d = 2 we have the following expansions, as z — oo,

O1fag=2 ~ ﬁl; {\/’3127@21\/5 + zi/;ezi\/z} ’
(©2 +2701)|a=2 ~ % {ﬁe—%ﬁ — ﬁe%ﬁ} )

(6.20)
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In [ZZ3] it was found that the integrals (6.8) and (6.9) have the following expan-
sions:

O1ldes ~ /1/3 - {21/6e35"7 _ ¢ 1/6e—3e" _ g 1/60—3e'/?
Oala—s ~ /2/3m {21 /0e3=""" 1 exl/0e= 377 Ezl/ﬁe—%“l/g},
@3|d=3 ~ —2im21/6 {ee*%EZ”S _ Ee*%ezl/?’} +

V6/mrIn2 . 21/6 {e%'zm +ee 3 4 Ee*%ww} .

(6.21)

Remark 5. The formulas (6.15)-(6.21) cannot be treated rigorously and the reason
for this is not the fact that the corresponding series are divergent. In fact, only
one or two leading terms are correct when argy or argx or arg z is fized. This is
related with the Stokes phenomenon discussed in detail in Section 7. Also there the
correct coefficients in the expansions (6.15)-(6.21) are computed.

6.3. Applications.

6.3.1. Expansion in the principal WKB solutions. The first application is the cor-
rect WKB expansion of the analytic solution ¢, to our hypergeometric equation.

Proposition 2. (a) Ford=2 and 0 <t <1, x > 0 we have

1 _
©1]d=2 ~ NG {g;_rinc + gprinc} :

(b) Ford=3 and 0 <t <1, z > 0 we have

1 z _
¢1|d:3 ~ m {g;rinc + gf)rinc - 2gprinc} :

Here gp,, are the principal WKB solutions from Definition 3. Of course, these
expansions are subject to the limitation from Remark 5.

This follows from Definition 3 and the fact that the solution ®;(y)|q=2,3 has the
same representation as in Proposition 2 with g7 replaced with G?. In the point (b)
the coefficient before g ;. is different than in Eq. (6.19); but by Remark 5 this
coefficient is not determined in that formula. It is calculated in Section 7.

We can formulate a result like Proposition 2 but with respect to the basic solu-
tions 6,. The formulas (6.20) for d = 2 and (6.21) (for d = 3) give representation of
the solutions ©; to a Bessel type equations in the WKB bases H?. By Theorem 1
the same relations connect the solutions 6; and hg ;.. But for us important is the
coeflicient before 64 in the representation of the WKB solutions A7 ;. in the basis

0. We have the following result (where F' are defined in Definition 4).



186 MICHAL ZAKRZEWSKI AND HENRYK ZOLADEK

Proposition 3. (a) Ifd=2 and 0 <t < 1, x > 0 then we have
_ —1
h}frinc = _hprinc = ﬁ : 92 mod 91,

This implies that
1 _
()01:%{F+—F }92 modal.

(b) Ifd=3 and 0 <t <1, x > 0 then we have

_ . . —i [3
hprinc =0- 937 princ — _hprinc = Z % : 93 mOd(ela 92)
This implies that
(3

o1 = Gy (F7 = F7} 05 mod(81,62).

In other sectors the relations are different than in item (b), but always we have

something like h7 ;.. = const-% /- - 63, where the constant is either 0 or 1 or —1

(see the next section).

6.3.2. Gaussian type integrals for d = 2. In the case d = 2 in [ZZ1] we continued
further the stationary phase expansion. We have Q = Q*¢' (as above). We put
qg = A/(uy/Tx), x+ = *iz, and we expand ixAL¢d = ix(d — ¢+) in powers of

$;1/2. We get
itAy ¢ = tiry In(1 F i (e“‘/“\/ﬁ - 1)) FizsIn (1 ¥ iu? (e—“‘/ux/E - 1)) .

The 2% —term of this expression equals —A? and other terms, denoted by Q(A4),
can be grouped as follows:

2

A n . A2 n
ryu? Z cm’nu‘lm (2) +(:|:2,/xiu3A) Z dm’nu4m (2
m>0,n>2 Ut m>0,n>1 UTTE
for some real coefficients ¢, and d,, (which do not depend on the sign =+).
m f e A% x e2dA, where 224 is expanded in
powers of A and integrated. By analogy with the Gaussian integrals we can assume
that

We get an integral of the form

if n is even and zero otherwise. Our computations lead to the following properties
of the basic solutions to the hypergeometric equation.
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Lemma 5. (a) We have

1 _ _
‘plld:Q ~ ﬁKprinc(x 2) (g;;st + gtest) ’

where K pyine(x72) is a formal series with real coefficients such that Kpyinc(z72) =
1+ 22 2 +... #1 (compare Eq. (4.19)).
(b) We have

T _ Ty
P2 Z{DJF('I 1)gt+est_D*($ l)gtest}’

where Py is defined in Remark 1 and Dy (x~1) are formal series satisfying

Di(a™) + D_(27) = 2K puinc (272).

First proof of formula (1.8). By Remark 1, Proposition 2 and Lemma 5 we
have

K rinc —
91(8) = L {Sang(_:st + Sasgtcst}

o

and a second solution can be taken in the form
~ N VT _
02(s) = —80sPy ~ T 9 {D+5889‘;:st - D—sasgtest}'

Since py = pot-const-pq, also /0\2 = fy+const-f1, and hence Eq. (2.9) gives [9\2 (0) =
02(0) = —1.
For the WKB functions g, we find the identity (see [ZZ1])
Sasg‘ist(s) = meiiwxgtq«:est (t> = $Z‘h‘z'fzsst (8)’ t=1- S,
where m = S5(1). This, together with the results of the previous, yields the follow-
ing:
Kprinc

(6.22) O1(s) ~ —xﬁ{ei”gést(t)+6_i”gt+est(t)},

7l ﬁ T, — —iTT
02(5) ~ xi{_D-"—e gtest(t)+D—e g;:st(t)}'

It implies that the formula

2K rine sinmx
D+ —+ D, T

p1(t) = -/9\2(8) mod 61,

This and the equalities #5(0) = —1, Dy + D_ = 2K prine (see Lemma 5(b)) imply
the formula fo(z) = —As(x) = sinnwz/7x.
Finally, we note that Eq. (6.22) implies the equality Kpirinc = L;j)[rinc and hence

F* = % /g (see Definition 4). Then the formula ¢ = —%2TZ .9, mod §; follows
also from Proposition 3 (but it needs the analysis from Section 7). I
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7. THE STOKES PHENOMENON

The Stokes phenomenon is related with ‘jumps’ of constants in the asymptotic
expansions of solutions of linear meromorphic differential equations near irregular
critical point. Here we define the Stokes operators as acting on the basic WKB
solutions. For precise informations about Stokes operators (in the case of a linear
equation near an irregular singularity) we refer the reader to [Was], [Zo3] and to
[ZZ2], where the Stokes phenomenon for the genuine WKB solutions of equations
with large parameter is discussed.

The Stokes phenomenon [St] is related with normalization of a linear system
2 = A(t)z in a neighborhood of an irregular singular point, say at ¢ = 0. The
neighborhood of ¢ = 0 is divided into sectors S;, such that there exist changes
z = B;(t)y holomorphic with respect to ¢ € S; which lead to a diagonal system
y = diag(di(t),...,dn(t))y. But the matrix-valued functions B; are different in
different sectors. The difference between B; and Bj; is measured via so-called
Stokes matrices (see [Zo3]).

In the context of WKB solutions, e.g. for t € (0,1) and large parameter z,
usually the Stokes matrices are related with solutions near one of the endpoints of
the time interval, ¢t = 0 or t = 1 (see [He]). One would like to define analogues
of the Stokes operators for the WKB solutions, but when the time ¢ € (0,1) is
real and the large parameter z varies in some sectors near x = oo, i.e. in (C,00).
However, a rather detailed analysis performed in [ZZ2] demonstrates that it is not
possible to do this in uniform way with respect to ¢t. Moreover, calculations of the
Stokes operators associated with the third order hypergeometric equation (1.1)4—3
demonstrate that the Stokes operators at the two endpoints of the interval (0, 1)
are essentially different.

When studying the Stokes phenomenon in [He] and [Fed] greater attention is
focused on analytic properties of the WKB solutions with respect to the time ¢,
while the parameter x &~ 400 is usually real. The so called Stokes lines are drawn
in the complex t—plane near the ‘turning points’ points ¢t = 0 and t = 1. In
this section we focus our attention on the parameter x, which will vary in whole
sectors near infinity, and the time ¢ will vary in a small neighborhood of the interval
(8,1 —pB) C C (like in Section 4.3).

Below we firstly calculate the Stokes operators for the Bessel type equations
(5.14)g=2,3 and (5.15)4=2.3, i.e. in the WKB bases G° and H? in Egs. (5.13).
We use essentially two methods: one from the book of J. Heading [He] and using
perturbation of the Bessel type equations to equations with regular singularities
and then considering corresponding monodromy matrices. An alternative approach
is to use results of the paper [DuMi| which imply that the principal Stokes matrix
differs from the identity only at one place.

It is worth to underline the fact that the Heading’s method is sufficient only in
the case d = 2. In the case d > 3 it is insufficient.
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Finally, in the second part of this section, we apply the results about the Bessel
type equations to analysis of the Stokes phenomenon for the principal WKB so-
lutions g7 ;,. and A7 . the hypergeometric equation (1.1). We show that the
connection coefficient Ay(z) from Lemma 3.2 is a sum of WKB type the formal
summands F'7, they are subject to Stokes phenomenon which is trivial in the case

d = 2 and nontrivial in the case d = 3.

7.1. Stokes operators for the Bessel type equations.

7.1.1. The case d = 2. We begin with Eq. (5.14)4—2. By a sectorial normalization
theorem the solutions éi(v) from Eq. (5.13)4—2 represent asymptotic series for
solutions éfl(v) which are analytic in some sectors about v = oo (in the complex
v—plane).

There are two such sectors: S, (right) and &; (left) with vertex at oo of angle
2 — 20 (6 > 0 and small) and with the rays argv = 0 and argv = 7 as their
bisectrices. The latter rays are called the rays of division. Then the sectors
Sy =S NS N{Imv >0}, and Sy = S, NS N {Imwv < 0} have angle m — 2.
The sectors S, and Sy are ‘transitional” sectors; their bisectrices are called the
Stokes lines. é;t and C:'li are the corresponding solutions in the sectors S, and
S; respectively obtained from the sectorial normalization theorem.

We note the following relations (where f < h means that the function f is much
smaller than the functions h) :

(7.1) Gl <G, inS, G, <GS inS,

1l

The solutions G (respectively Gi°) are analytic in the adjacent sectors S, (up)
and Sy (down). Therefore they are expressed as linear linear combinations of the
corresponding solutions éli (respectively éf) The corresponding matrices C,, and
Cy of changes between the basic solutions are called the Stokes matrices.

Each Stokes matrix is triangular with 1 on the diagonal. We have

o 1 C12 - 1 0
- T A )

This means that, after passing from the sector S, to the sector S;, the basic solutions
undergo the following changes:

(7.3) Gf = Gf, Gy =G +caGf (in 8,),
(7.4) Gf = Gr4enGy, Gr =G (n 8.
The rule is that to a given solution one can add a solution with smaller asymptotic
at infinity. We shall calculate the coefficients ci1o and cy; using the method from

[He], where Stokes matrices associated with the Bessel equation were computed
(see also [Zo3]).
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We note also the following symmetry property:

(7.5) é;r(e”v) = -G (v), é; (e™v) = G (v), v>0.

Let G} (v) on the ray argv = 0 (in the sector S,.) be represented by the following
combination of the basic solutions ®;(v) = ®1(v?), ®2(v) = ®3(v?) = &;Inv? +
\112(7)2) :

(7.6) G (v) = K1®1(v) + Ka®o(v), v >0,
for some coefficients K and K5. After passing to the ray argv = 7 (in &) alld the

substitution v — —v (using Eqgs. (7.5) and the logarithmic singularity of ®5) we
get

(7.7) —G-(v) = (K1 4 2miK2)® (v) + Ko®s(v), v > 0.

Analogously, after passing to the ray argz = 27 and using an analogue of the
relations (7.5), we get

(7.8) —GH W) — en Gy (v) = (Ky + 4miK,) 1 (v) + Ka®y(v), v > 0.
Egs. (7.6)—(7.8) imply the representation (on argv = 0)

1K ) K
Ky 27K} To2rK3 T

~ 2 ~ ~

1(0) = 5 (G + 67, Balo) = (

and that

Co1 = 2.
Moreover, the asymptotic formula (6.18) implies that Ko = i/+/7.

In the same way one proves that c;o = —2 and obtains the representation
1

PN

Calculation of the Stokes matrices associated with the Bessel type equation
(5.15)4=2 runs practically in the same way as above. The formal WKB solutions

H* (w) = \/—wye 2%+ {1+ — 4+ —5 - }, wy = Fiw.
£

satisfy the Bessel type equation (5.15)4—2 with another pair of solutions

By (v) = (él_ - é;‘), argv = 7.

(7.9) él(w)zw—%wQ—l—..., Ba(w) = B1(w) - nw + Sy (w)

(with analytic ©; and Zs).

Now we have the same sectors S, ;, with analytic solutions H ril, and S, ¢ about
w = 00, but with domination relations different than in Eq. (7.1). Therefore the
corresponding Stokes matrices take the following form

(1 0 (1 di2
T R
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Anyway (using also Egs. (6.20)) we arrive to the following result, where Eq. (7.17)
is a consequence of the factor \/—w~ in definition of H*: we have Hli (e2™iw) =
—HF (w).

We summarize this in the following

Proposition 4. (a) We have c19 = —2 and co1 = 2 in Eqs (7.2). Moreover,

(7.11) ®4(v) = (G*—#G ), ®y = —iy/m -G mod®y, argv = 0;

M
37 (O

(b) We have d12 = —2 and da; =2 in Eqs (7.10). Moreover,

(7.12) ®4(v) = G+>, D, = —zﬁéf mod ®;, argv = .

o, — On — i/ T+ S —0
(7.13) ©, = 2\F (H v HS ) Oy = —ivr-HY mod®,, argw = 0;
~ 1/~ ~ -~ - -
(7.14) 6, = ﬁ(Hl ~H), 6 =ivr- A mod®, agw=r.

In particular, we get

(7.15) H}f (w) = —H; = (i/\/7) - O3 mod©;, argw = 0;
(7.16) Hf (w) = H = (—i/\/7) 05 mod©y, argw =
(7.17) HY(w) = —H = (i/\/7) -0 mod©;, argw = —.

Above we give the representation of the function &)1(1)) for v on the two rays
of division. But, in fact, these formulas hold true in the whole sectors S, ; which
contains the corresponding ray of division. The same remark applies in other
expansions.

7.1.2. The case d = 3. Eq. (5.14)4—3 has the following independent solutions
~ ~ ~ ~ 1 ~ ~
D1 (v) = @1 (v3), Do(v) = Oy Inv® 4 Vy(v), B3 = 5o In?(v3) + Wy Inv® + W3,

where &)i’ Ty and CI;3 are entire functions and depend on v3. We have also the
system G of WKB type solutions defined in the sectors S; about v = oo (see Eq.
(5.16) and Figure 1 below).

The rays of division R; (or the anti-Stokes lines) are given by argv = 0, 7/3,
27/3, m, 4w /3, 5m/3, i.e. they are the bisectrices of the sectors S;. Then the sectors
812 = Sl N 82, 823, 834, 545, 856, 861 have angle 7T/3 -6 (see Figure 1); their
bisectrices are known as the Stokes lines. The corresponding Stokes matrices C};
are the matrices of changes between the basic solutions {é;’} and {é}’} in the
sectors S; and S;.
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Each matrix C};, after suitable ordering of the basic solutions, becomes upper
triangular with 1’s on the diagonal. For example, in the sector S12 we have

G, <G5 <G5, j=12.

The Stokes matrix associated with the sector Syo equals

1 a b
(718) 021 == 0 1 C s
0 0 1

where the parameters a, b, ¢ are to be determined.

Other Stokes matrices can be obtained from the matrix C5; using the fact that
Eq. (5.16) is invariant with respect to:

— the rotation v — €2v (where € = €'7/3),

— the complex conjugation v — .

Formally the rotation e2v is reflected in the cyclic permutation of solutions,

:;7+2(e2v) = (~¥§2‘7(v). The double rotation results in~the charige é?+4(647}) =
G§4"(v). The complex conjugation induces the change G7(v) = G7_;(v); but here
also the orientation of the v—plane is reversed. Compare also Eqs. (4.27)—(4.28).

R s, B

FicUrE 1. Rays of division

Therefore the Stokes matrices Cy3 and Cgs are obtained from Cs; by application
of conjugation with suitable permutation matrices. The matrix Cig is obtained
from Cs; by: complex conjugation, taking the inverse and conjugation with the
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permutation (1) (23) . The matrices Cs2 and Cs4 are obtained from the matrix Cig
by permutations.

In the calculation of the Stokes matrix C3; we follow the Heading methoNd de-
scribed in the previous section for the case d = 2. We represent the function G~ (v)

in the ray Ry = {argv = 0} in the basis {2133} ,

éf = K191 + Ky®y + K33

(with coefficients K;), and we pass to the rays R3, Rs and R, using actions of the

matrices 031 = 032021, 053 = 054043 and 015 = 016065 and substitutions 621),

¢*v and €%v in the argument. We arrive at the following relation

(7.19) b=3+a+eg,
but the parameters a and c¢ are not determined.

We repeat the same analysis, but starting from the ray Rg = {argv = —n/3}
and use the matrices Cos = Ca1C16, Ciya and Cgy. Again we get relation (7.19).

In order to calculate the constants a and ¢ we use the known property (see [Gl]
or [Zol]) that Stokes operators are limits of monodromy operators of a perturbed
equation which has regular singularities.

An obvious perturbation of Eq. (5.3) is the our initial hypergeometric equation,
ie. (1—yz=3)0yydyyd,G + G = 0, and the corresponding perturbation of Eq.
(5.14) is

(7.20) (1—(v/2)?) Dyv9,v8,G + 272G = 0.
Together with perturbation (7.20) we shall consider the following one:
(7.21) (14 (v/2)*) 90,8, G + 270G = 0,

i.e. with change of the sign before (v/x)°.

Eq. (7.20) has three additional singular points v; = x, vy = €2z, wv3 = € 2x

which tend to infinity as x — oo and where we assume that x is real positive. The
latter singular points lie in the division rays R1, R3 and R5 and the monodromy
matrices My, My and M3 (in some basis of solutions) defined by prolongation of
solutions along curves around these points (in the clockwise direction) should tend
(as x — 00) to matrices equivalent to 0561, C4721 and C(;ll respectively.

On the other hand, each monodromy matrix M;, j = 1,2,3, is equivalent to
some monodromy matrix M related with the hypergeometric equation (1.1)4-3
and corresponding to the singular point ¢ = 1. Since the basic solutions of the latter
equation near s = 1 —t =0are s+...,s2+...,and (s> +...)Ina®s+a+ ...
the corresponding monodromy matrix M; has all eigenvalues equal to 1 and its
Jordan decomposition consists of two cells; anyway, the characteristic polynomial
is P(\) = det (M; —\) = (1 — \)3. Looking at the matrix Cyg in [ZZ3] one finds
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that its characteristic polynomial is (1 - A\ — (2 - |C\2) A+ 1) . It follows that
c=0.

Equation (7.21) is related with the modified hypergeometric equation (1 +
t)0totdg +x3g = 0, where one checks that the basic solutions near s = 1+t = 0 are
s+...,s2+...and (s +...)Ins+.... Here also the corresponding monodromy
matrix has eigenvalues 1 and two Jordan cells. On the other hand, the monodromy
matrices related with the singular points v = —z, ex, €z of equation (7.21) tend to
the matrices Cg;', C5;', Cpg'- The same arguments as above show that a = 0.

From the above we get the following result.

Proposition 5. The principal Stokes matriz associated with the WKB bases (é‘l’)
and (ég) , 0 = —1,¢€,€, takes the form

Moreover we have the following representations:
@ = =G+ Gl —267),
(7.22) o, = %(Gi — Gf) mod Py,
(53 = —%é; mod (‘517(52)
(for v € R1). Analogous representations hold in other rays of division:
(G +G5+G5), vERy, j=2,4,6,
(Gy + G5+ G5 =3G5), veRy, (%) = (1,-),(3,6),(5,9).

§ - L
(723) T3
=3

Note that in the ray R; two dominating WKB solutions G¢ and G are of the
the same order. So the coefficients between them in Eq. (7.22) are determined
by the asymptotic of the oscillating integral (via the stationary phase formula).
The coefficients before G¢ and G¢ in Eq. (7.22) agree with Proposition 2, but the
coefficient before G~ is different.

From the proof of Proposition 5 it is seen that using only the method from the
Heading’s book [He] we are not able to compute all the Stokes matrices, we obtain
only one relation (7.19). On the other hand, only the knowledge of the Jordan
decomposition of the composed Stokes matrices, like Cs1, does not allow to obtain
relation (7.19). Therefore the both methods should be used. Probably this fact is
true in more general high order linear meromorphic ODE’s.

Of course, the relative simplicity of the principal Stokes matrix can be explained

by the fact that the domains of analyticity of the functions é;’ are larger than the
sectors S; (compare Section 5.2).
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As we have mentioned, the Stokes matrices associated with the WKB solutions
G%, from Remark 3 were calculated by A. Duval and C. Mitschi [DuMi]. Their
calculations rely upon properties of the Mellin—-Barnes integrals proved by C. Meijer
[Me]. Anyway, their result completely agrees with ours.®

_ The analysis leading to Stokes operators associated with formal WKB solutions
H (w) ~ /—owe37"/2 (see Eq. (5.11)) which are asymptotic series for analytic

WKB solutions HY defined in sectors S; about w = oo (see Eq. (5.17)) leads to
the following result. Below the constants

Ly =V3/2 and L3 = (—i/4)\/3/2r
appear in the representation
Hy = 1101 + LoO, + L3Os, w € Ry,
and are taken from Eq. (6.21).

Proposition 6. The principal Stokes matrix associated with the WKB bases (f[}f)
and (f[g) , 0 =—1,¢,¢€, takes the form

Moreover we have the following representation:
41,0y = 2H; — H — H¢,
(7.24) Amil3Oy = —HS + HE,
4L3@3 = 2(H4_ +Hi) mod ("‘)2

forw € Ry and 0 < t < 1. The representations in other rays R; (and0 <t < 1) are
presented in [ZZ3, Prop. 5.5]. This implies the following relations mod ((:)1, 62) :

H; =0, —Hf=Ht=L3O3, we Ry
ﬁQ_ = 7[?5 :ﬁ; :Lgég, w € Ra
HS =0, Hy = H§=L303, we Rs
(7.25) Hy = HS = H = L3O3, w € Ry
HE =0, Hi = Hf= L3063, we Rs
ﬁg = ﬁé = —ﬁg :Lgég7 w € Rg
ﬁl_ :0, ﬁfifﬁ'f:Lgég, wGRl.

8Tn the sequent paper [Mit] Mitschi applied the results of [DuMi| to compute the differential
Galois groups of some confluent hypergeometric equations. Previously these groups were calcu-
lated in algebro—geometrical way (which avoids calculation of the Stokes constants) by N. Katz
[Kal] and [Ka2]; the method of Katz was initiated in the paper [BBH].
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Note that for z > 0, i.e. w > 0, the value of ©3 mod O, agrees with Eq. (6.21),
which was obtained by calculation of corresponding mountain pass integrals.

Note also the difference between the data of the latter tables for the ray R
(in the first and in the last row in Eq. (7.25)). It corresponds to the turning
w — e2™w. Here @1 changes to 761, 62 is unchanged, 63 acquires a term
proportional to O, and H° change to —H", all is OK.

7.2. Stokes operators for the hypergeometric equation. We deal with formal
WKB solutions for the hypergeometric equation as well as for the corresponding
Bessel type equations. By results of Section 5.2 the reductions to the normal (di-
agonal) form for associated with them systems are compatible. Recall that these
formal solutions are of Gevrey type and in suitable domains are represented by an-
alytic functions, but the above analytic constructions are not quite compatible. In
the other hand, the analytic equivalences with corresponding Bessel type equations
(using the matrices Hop and H; in Section 5.3) imply compatibility of analytic and
of formal solutions.

So, in order to avoid technicalities, we limit ourselves to the formal case. This
is the way chosen in [ZZ3] for d = 3. In [ZZ1] the case d = 2 is done with complete
details.

7.2.1. The case d = 2. Let 0 < ¢ < 1. Using Theorem 1 and Definition 3 we can
replace in Propomtlon 4 <I> and @ with ¢; and 6; and the WKB solutions Giand

H]i with gprinC and h;mc Therefore, for arga = 0, we have

1o, _
Y1 = ﬁ {gprinc + gprinc}
1
= ﬁ{ ( )h;)rrmc + F ( )hprmc}

1 1
= — - —{Ft-F}.0 do.
NIV -0z modfy
For argx = m we have
1
- - .t
Y1 = Qﬁ {gprlnc gprmc}
1 —1
= — —{F —-F*}.9 do.
2/7 ﬁ{ } 02 modfy
Here F*(z) = Le*™mw(1/2), wt =14 O(1/z) are defined in Definition 4 (com-

pare also Pr0p051t10ns 2 and 3). The above pattern repeats as argx increases by
2m.
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We arrive at the following.

Proposition 7. The connection coefficient As(x) from Lemma 2 equals

As(x) = i {Ft(z) - F (2)}, = — oo,

where the functions F*(x) are single valued.

Second proof of the formula (1.8). We note that the function fa(z) =
—As(x) vanishes at the points © = £1,£2,.... Since the function sin7z/x has
simple zeroes at these points, we find that the function

fa(z)/ (sinma/x)
is entire on C. By Proposition 7 it is bounded at infinity. Therefore it is a constant
function equal 1/7 (since f(0) =1). 1

7.2.2. The case d = 3. Here we follow the previous case with use of Propositions 5
and 6. For 0 <t < 1, we have

V301t %) = Gprine + Iprine — 20prine: T € Ru,
ggrinc + ggrinc + g;:rinc’ S R2;
g;rinc + ggrinc - 2gI€)rinC7 T e R3’
g;rinc + ggrinc + g};:inc’ HAS R45
g]:rinc + gliarinc - 29;rinc’ S R5;
g;rinc + g;rinc + g;rinc’ HAS Rﬁa

where g7 e = F7RY e

We have also the following relation modulo (6, 62) :

h_ =0, he = —ht = L3(93, x e R1,

princ princ princ

and other relations like in Eqs. (7.25), where L3 = —£/3/2m.

This implies the following representations of the generating function f3(x) =
—2A3 (37) :

—i (2m)*? f3(z) = F° - F°, z € Ra,

F¢ —F¢_F~, x¢€R,,

F~ + F¢ x € Rs3

7.26 o ’
(7.26) Fe+ FE+ F~, z€Ry,
F~ + Fe, z € Ry,

F~+ F°— F°, z¢Re,
where F7 = 57/1262“”/\/5(,0”@’1/2) are the WKB type functions from Definition
4.

Since F7(x) = F¢(x/?) depend on x'/? (see Eq. 5.22)), table (7.26) should be
continued in order to turn twice around x = co. The corresponding formulas are
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related with compositions of the changes from Eqs. (7.26) with the monodromy of
the functions FY :

(7.27) Moo : F —s —F2.

We also see that the functions F{ are subject to Stokes phenomenon with the
principal Stokes matrix relating solutions at the rays R; and Ry of the form

(7.28) Coy =

We can state the fundamental result of the whole paper.

Theorem 2. The collection {Fi} of WKB type functions is subject to the mon-
odromy (7.27) around x = oo and the Stokes phenomenon with the constant prin-
cipal matriz (7.28) (other Stokes matrices are obtained from this by applying the
conjugation and rotation symmetries). The generating function fs(z), which is
entire function of x, in each sector S; near infinity is a linear combination with
constant coefficients of the functions FY.

Moreover, the functions FY are WKB solutions to a sixth order differential equa-
tion near x = oo of the form

(7.29) Oof + @10 f + asdy f + a3y f + a0 f + a0, f + agf =0

with analytic coefficients

(7.30) aj(@) = ajpz

k>0
such that

(7.31)  aso =2S53(1)% ago=S53(1)° a11=as1, a1 =as1, asz1=ag:.

)

Also the generating function fs(x) satisfies Eq. (7.29).

Proof. The first statement of the theorem (about the monodromy and the Stokes
matrices) is already proved. From this it follows that the space generated by the
functions F¢(z) near x = oo (or their analytic representatives) is invariant with
respect to monodromy around x = oo and with respect to passing from one sector
to an adjacent sector. Since the monodromy matrix M, and the Stokes matrices
have constant coefficients, also the spaces generated by the successive derivatives
01 F{ are invariant. As in other similar situations (see [Zo3]), we arrive to the
determinant equation

fooof .. 03f

F 0,Fy ... 0%k

det =0

Fs 0,Fs ... 0°Fg
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which is satisfied by the functions F; (where we have ordered the functions F{ =
F;). This equation is equivalent to Eq. (7.29), where the coefficients a;(x) are
ratios of some minors of sixth dimension and are holomorphic and single valued
functions of z.

The form (7.30) of the coefficients a;(x) and the relations (7.31) follow from
the fact that the WKB solutions have the form ~ e?®9(1z=3/2 When we as-
sume a solution f ~ e"*xY then we should get the ‘Hamilton—Jacobi equation’
> a0k = (K% + Sg(l))2 = 0 and the value v = —3/2 implies the equation

6- (0S5(1))° - <23) +ago -3 (0S5(1))? (23) £ a0 (051 =0,

which is satisfied for any 0 = —1,¢,€. I

Remark 6. It is highly interesting whether Eq. (7.29) can be prolonged to the
whole x—plane with the other singularity at © = 0. Indeed, the function fs(x) is its
solution and has very regular behavior at x = 0. So, maybe Eq. (7.29) has regular
singularity at x = 0.

But then each its coefficient a;(x) should be rational with pole at x =0 of order
< j. Moreover, since f3 depends on x>, our equation should be of the form

FYD 4oz fV) 4 oz 2 fUV) 4 (e + cqz™3) fUID
(7.32) + (csz™ ! + cor) fFan 4 (era™2 + cga™®) Jis
+ (Cg + 010$73 + 011396) f=0.

Then we get the following recurrence for the coefficients in f3 = bpaF

{611 + 3kcg + 3k(3k — 1)06 + 3k(3k — 1)(3k - 2)64 + 3k ... (3k — 3)62
¥3k... (3k — 4)e1 +3k... (3k — 5)Yout
{e10 + (3k — 3)er + (3k — 3)(3k — 4)es + (3k — 3) ... (3k — 5)csbp_1
+cob,_o = 0.

In a particular, for k = 2 we get an equation relating by = 1, by = —((3) and
by = ((3,3) = £ (¢(3)2 = ¢(6)) (where ((6) = n%/945). Since the coefficients c;
are potentially calculable, we could arrive at a quadratic equation for ((3) with
coefficients which most probably belong to the field Q(m,/3).

Recall that R. Apéry [Ap] was the first who proved the irrationality of ((3). If
our speculations turned out correct it would be quite spectacular achievement.

Another question is about the values of the constants p, q in the principal Stokes
matriz in Eq. (7.28). Probably p =0 and ¢ = —1.
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