
Analytic and Algebraic Geometry
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MULTIPLE ZETA VALUES AND THE WKB METHOD

MICHA L ZAKRZEWSKI AND HENRYK ŻO LA̧DEK

Abstract. The multiple zeta values ζ(d1, . . . , dr) are natural generalizations

of the values ζ(d) of the Riemann zeta functions at integers d. They have
many applications, e.g. in knot theory and in quantum physics. It turns

out that some generating functions for the multiple zeta values, like fd(x) =

1 − ζ(d)xd + ζ(d, d)x2d − . . . , are related with hypergeometric equations.
More precisely, fd(x) is the value at t = 1 of some hypergeometric series

dFd−1(t) = 1 − xdt + . . ., a solution to a hypergeometric equation of degree
d with parameter x. Our idea is to represent fd(x) as some connection coeffi-

cient between certain standard bases of solutions near t = 0 and near t = 1.

Moreover, we assume that |x| is large. For large complex x the above basic so-
lutions are represented in terms of so-called WKB solutions. The series which

define the WKB solutions are divergent and are subject to so-called Stokes

phenomenon. Anyway it is possible to treat them rigorously. In the paper we
review our results about application of the WKB method to the generating

functions fd(x), focusing on the cases d = 2 and d = 3.

1. Introduction

We study the following hypergeometric equations

(1.1) (1− t)∂(t∂)d−1g + xdg = 0,

where ∂ = ∂t = ∂/∂t, with one solution in form of the hypergeometric series (see
[BE1])1

2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Multiple zeta values, hypergeometric differential equations, WKB

expansion.
Supported by Polish OPUS Grant No 2012/05/B/ST1/03195 and by Polish-French PHC

POLONIUM 2013 PROJECT No 28217 SG.
1Recall the standard formula pFq(α1, . . . αp;β1, . . . , βq ; t) =

∑∞
n=0

(α1)n...(αp)n
(β1)n...(βq)nn!

tn where

(α)n = α(α + 1) . . . (α + n − 1) is the known Pochhammer symbol. Eq. (1.1) can be found in

[Zud1] and [Zo2]
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ϕ1(t;x) = dFd−1(−ς0x, . . . ,−ςd−1x; 1, . . . , 1; t)(1.2)

= 1− xdt+ (−xd)
(
1− xd

)
t2/(2!)d + . . .

here

(1.3) ς = e2πi/d

is the primitive root of unity of degree d (other solutions ϕ2, . . . , ϕd are given in
Section 3.1). For d = 1 we have the simple (and unique solution) ϕ1 = (1− t)x , so
this case is not interesting.

But when the degree of the equation is greater, d ≥ 2, then something interesting
happens. It turns out that the solution (1.2) evaluated at t = 1 is a generating
function for so-called multiple zeta values (MZV’s, see [Zag1])2

(1.4) ζ(d1, . . . , dk) =
∑

0<n1<...<nk

1

nd11 . . . ndkk
, dj ≥ 1, dk ≥ 2.

Namely,

(1.5) ϕ1(1;x) = fd(x)

where fd is the following generating function:

(1.6) fd(x) = 1− ζ(d)xd + ζ(d, d)x2d − . . .
(see [Zo2] and Section 3 below).

It is easy to show the formula

(1.7) fd(x) =

∞∏
n=1

(
1−

(x
n

)d)
which implies, in particular, that

(1.8) f2(x) =
sinπx

πx
.

But for odd degrees we do not have similar formulas. Since the R. Apery’s work
[Ap] we know that the number ζ(3) is irrational, but it is not known whether it is
algebraic or not. Due to formula (1.8) below we assume that:

(1.9) d = 2 or d > 2 is odd.

The idea of this paper and of [Zo2, ZZ1, ZZ2, ZZ3] is to express the solution
(1.2) in suitable basis (θ1, . . . , θd) of solutions near t = 1;

ϕ1 = A1(x)θ1 + . . .+Ad(x)θd.

The basis near t = 1 is such that θj |t=1 = 0 for j = 1, . . . , d − 1 and θd|t=1 is a
known nonzero number. Therefore it is enough to find the coefficient Ad(x) before
θd. The coefficients Aj(x) are analytic functions in x ∈ C�0, with only possible

2In some sources the sum in Eq. (1.4) is denoted ζ(dk, . . . d1).
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singularities at x = 0 and at x = ∞ (see Sections 3). So there appears an idea to
consider behavior of the solutions when the parameter x becomes large.

For large |x| there exist some special solutions of the form

g ∼ xγexS(t)
{
χ0(t) + χ1(t)x−1 + . . .

}
,

known as the WKB solutions. Here the ‘action’ S(t) and the amplitudes χj(t)
satisfy some ODEs which are easy to integrate. There exist basic WKB solutions

gσ(t;x) ∼ exp(σxSd(t)) with Sd(t) =
∫ t

0
τ1/d−1(1 − τ)−1/ddτ and σ = ςj+1/2

(j = 0, . . . , d − 1) to Eq. (1.1) (see Section 4). One would like to represent the
solutions ϕ1 and θj in the WKB basis. To this aim one could use some integral
representations of the solutions ϕ1 and θj and then to evaluate the corresponding
integrals, which are of oscillatory type, using the stationary phase formula (see
[Fed, He]).

This approach is tempting but it encounters serious obstacles. One of them is
the question of uniqueness of the series defining the WKB solutions. The functions
χj(t) satisfy an infinite series of ODEs and an infinite number of constants of
integration of these equations has to be determined. In Definition 1 (in Section
4.1) we define so-called testing WKB solutions gσtest by choosing some arbitrary
procedure of fixing the integration constants. But it is not the right choice. In
Section 4.2 we define so-called normal WKB solutions gσnorm which are more natural,
because they are obtained via some normalization procedure (i.e. a diagonalization)
of a corresponding linear first order differential system and this procedure is unique.

But the main difficulty arises from the fact that the series defining the WKB
solutions are divergent. It turns out that one can define analytic WKB solutions
by applying an analytic version of the normalization procedure (see Section 4.3),
but the domains of definition of the latter solutions are quite small: for 0 < t < 1
the parameter x lies in a sector in C with vertex at x =∞. Moreover, the analytic
normalization requires solving some integral equation and the solutions obtained
are not unique.

In Section 5 we develop a new approach in the asymptotic analysis of linear
differential equations like Eq. (1.1). For t near 0 we approximate Eq. (1.1) with

so-called Bessel type equation ∂y (y∂y)
d−1

G+G = 0 for G(y) where y = x3t (see
Eq. (5.3)). Similarly, for s = 1− t close to 0 we have an approximation by another
Bessel type equation (Eq. (5.5)) for H(z), where z = xdsd−1. These Bessel type
equations have only two singular points: regular at y = 0 (respectively at z = 0)
and irregular at y = ∞ (respectively at z = ∞). In Theorem 1 we prove that
the hypergeometric equation (1.1) for g(t;x) near t = 0 is analytically equivalent
with the corresponding Bessel type equation for G(y) and that the corresponding
equation for h(s;x) = g(1−s;x) near s = 0 is analytically equivalent with the Bessel
type equation for H(z). The Bessel type equations admit uniquely defined WKB

type solutions Gσ(y) ∼ edσy1/d for y →∞ and Hσ ∼ e(d/(1−d))σz1/d for z →∞. In
Section 5.3 we define so-called principal WKB solutions gσprinc and hσprinc as images
of the WKB solutions Gσ and Hσ using the above analytic equivalences.
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To represent the solution ϕ1(t;x) (defined by the hypergeometric series (1.2)) in
the basis

(
gσprinc

)
one expresses this hypergeometric function via a contour integral

(in Section 6.1). This is an oscillatory type integral (or a mountain pass integral).
It is evaluated asymptotically as x→∞ using well known stationary phase formula
(or the mountain pass formula).

For the degree d = 2 one can write down suitable integral representations for
the basic solutions θ1(s;x) and θ2(s;x) near s = 1 − t = 0. The corresponding
stationary phase formula allows to represent θj in the basis

(
hσprinc

)
. Because the

relation between the bases
(
gσprinc

)
and

(
hσprinc

)
is given by a diagonal matrix (at

least formally) it is possible to give new proofs of the formula (1.8). We give two
proofs, one in Section 6.3 and another one in Section 7.2.1.

However, here we must underline that the existence of the integral formulas for
θ1,2 in the case d = 2 follows from the formula θj(s) = −s∂sϕj(s), which is a
consequence of so-called self-duality for the MZV’s ζ(2, . . . , 2) (see Eqs. (2.8)–(2.9)
and Lemma 3 below).

In the case of odd d > 2 there are no integral formulas for the basic solutions
θj , j = 1, . . . , d. But we can find such formulas for corresponding solutions Θj(z)
(to the Bessel type equation) which approximate the solutions θj . Evaluating these
integrals, using the mountain pass formula for large |z|, one finds expansions of the
functions Θj in the basis (Hσ) . Next, one uses the equivalence of the hypergeo-
metric and the Bessel equations near s = 0 to expand θj in the principal WKB
basis

(
hσprinc

)
. We do it for the case d = 3.

The WKB solutions Gσ (respectively Hσ) are subject to so-called Stokes phe-
nomenon. It relies upon the property that the formal solutions Gσ are asymptotic
expansions of some genuine analytic solutions Gσj , defined in some sectors Sj , but
in intersection of two adjacent sectors the relation between the corresponding bases
is given by so-called Stokes matrix (which is not identical). This explains the di-
vergence of the series defining Gσ and is responsible for the unpleasant fact that
the coefficients in the expansion of the function Φ1(y) (approximating ϕ1) given by
the stationary phase formula are not exact. More precisely, only the dominating

terms const·edσy1/d , as |y| → ∞ and arg y is fixed, are correct. Other terms are
determined by an analysis leading to computation of the Stokes matrices. The
same is true for the WKB solutions Hσ and representations of Θj(z) in terms of
(Hσ) for |z| → ∞ and fixed arg z. This is done in Section 7.1.

In Section 7.2 we apply the above theory to get a representation

Ad(x) =
∑

aσ · Fσ(x)

for the connection coefficient before θd in the representation of ϕ1 in the basis (θj) .
Here Fσ(x) are functions of WKB type. For d = 2 we prove that the functions Fσ

are single valued, i.e. the corresponding Stokes operators are trivial.
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For d = 3 we have

Fσ = ±x−3/2e2πσx/
√

3ωσ(x−1/2)

which are subject to a nontrivial Stokes phenomenon. Moreover, their monodromy,
as x makes a turn around ∞, is nontrivial (due to the factor x−3/2). This implies
that the function A3(x) is a solution of a meromorphic sixth order linear equation
with irregular singularity at x =∞ (Theorem 2).

Since the function A3(x) is entire (and holomorphic at x = 0) it is quite plausible
that the equation satisfied by Fσ’s has regular singularity at x = 0. Then this
equation should take the following form

f (V I) + c1x
−1f (V ) + c2x

−2f (IV ) +
(
c3 + c4x

−3
)
f (III) +

(
c5x
−1 + c6x

−4
)
f (II)

+
(
c7x
−2 + c8x

−5
)
f (I) +

(
c9 + c10x

−3 + c11x
6
)
f = 0

where c3 = 2
(
2π/
√

3
)3
, c9 =

(
2π
√

3
)6

and other coefficients cj are computable

(most probably are expressed in an algebraic way via π and
√

3). But then the
coefficients bk = (−1)kζ(3, . . . , 3) in the expansion f3 =

∑
bkx

3k should satisfy a
recurrent relation, hence all the zeta values ζ(3, . . . ., 3) are expressed via ζ(3) and
ζ(3) would satisfy an algebraic equation with coefficients depending on the cj ’s.
We plan to calculate the coefficients cj in a separate paper.

Sections 2 of the paper is devoted to presentation of some basic facts about
MZV’s and about their relations with hypergeometric series.

2. MZV’s, polylogarithms and hypergeometric series

The Multiple Zeta Values (MZV’s) ζ(d1, . . . , dk) are defined in Eq. (1.4). Any
such quantity has its weight d = d1 + . . . + dk, depth equal k and height h =
] {i : di > 1} .

They form a graded algebra, where the grading is defined by the weight. Indeed,
we can rewrite the product of two infinite sums( ∑

n1<...<nk

)( ∑
m1<...<ml

)
in the product ζ(d1, . . . , dk)ζ(e1, . . . , el) as a finite sum corresponding to different
orderings of the index set {n1, . . . , nk,m1, . . . ,ml} . The corresponding identity is
sometimes called the first shuffle product. For example, we have

(2.1) ζ(2)ζ(2) = 2ζ(2, 2) + ζ(4)

which implies ζ(4) = π4/90. It was Euler who used this sort of shuffle relations to
prove that ζ(2k) = π2k×(rational number).

Important is the problem of calculation of the dimension Dd of the space Zd
(over the field Q) generated by the MZV’s of weight d. There exists a conjecture
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(see [Zag1]) that these dimensions satisfy the recursion Dd = Dd−2 + Dd−3 (with
D0 = 1 and Dd = 0 for d < 0). This is equivalent to the property∑

Ddt
d =

1

1− t2 − t3
.

M. Hoffman [Hof] conjectured that the algebra of MZV’s is generated by special
values of the form ζ(d1, . . . , dk) with dj ∈ {2, 3} . This conjecture was recently
proved by F. Brown [Bro]; in the proof some explicit relations between the values
ζ(2, . . . , 2), ζ(2r + 1) and ζ(2, . . . , 2, 3, 2, . . . , 2) (proved by D. Zagier [Zag2]) are
used.

There exists the following Kontsevich–Drinfeld formula ([KoZa]) for the
MZV’s. Let

(2.2) ω0(t) = dt/t, ω1(t) = dt/(1− t)

be two 1−forms. For given d1, . . . , dk we define the d−form

Ωd1,...,dk = ω0(td1+...+dk) . . . ω0(td1+...+dk−1+2)ω1(td1+...+dk−1+1)(2.3)

. . . ω0(td1) . . . ω0(t2)ω1(t1);

there are k forms ω1 with arguments t1, td1+1, . . . , td1+...+dk−1+1. Next, we integrate
it over the simplex {0 ≤ t1 ≤ . . . ≤ td ≤ 1} :

(2.4) ζ(d1, . . . , dk) =

∫
0≤t1≤...≤td≤1

Ωd1,...,dk .

For example, we have3

(2.5)

∫
0≤t1≤t2≤1

dt2
t2

dt1
1− t1

=
∑
n≥1

1

n

∫ 1

0

tn−1
2 dt2 =

∑ 1

n2
= ζ(2).

The latter formula is generalized to the generalized polylogarithms

(2.6)
Lid1,...,dk(t) =

∑
0<n1<n2<...<nk

tnk/nd11 . . . ndkk
=

∫
0≤t1≤...≤td≤t Ωd1,...,dk .

It implies another shuffle multiplication. The product(∫
t1≤...≤td≤t

)(∫
s1≤...≤se≤t

)

3Such integrals appear as coefficients in some knot invariants and in evaluation of some Feyn-

mann integrals in quantum physics.
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of integrals is represented as a finite sum of integrals according to the ordering of
the variables set {t1, . . . , td, s1, . . . , sd} . For example, we have

Li2(t)Li1(t) =

(∫
0≤t1≤t2≤t

dt2dt1
t2(1− t1)

)(∫ t

0

dt3
1− t3

)
(2.7)

=

(
2

∫
0≤t1≤t3≤t2≤t

+

∫
0≤t1≤t2≤t3≤t

)
dt2dt3dt1

t2(1− t3)(1− t1)

= 2Li1,2(t) + Li2,1(t).

The second shuffle formula leads to an interesting shuffle algebra (see [MPH,
Zud1]), but there is no place to describe its details.

The Drinfeld–Kontsevich formula (2.4) leads to the following MZV duality.
Namely, we put s1 = 1− td, . . . , sd = 1− t1; thus ωεj (tj) = ω1−εj (1− sd−j+1) and
we get

(2.8) ζ(1, . . . 1,m1 +2, . . . , 1, . . . , 1,mr+2) = ζ(1, . . . 1, nr+2, . . . , 1, . . . , 1, n1 +2)

where the sequences of 1’s have lengths nj in the left-hand side and mr−j+1 in the
right hand side. We observe that the quantities

(2.9) ζ(2, . . . , 2) and ζ(1, 3, . . . , 1, 3)

are invariant with respect to the MZV duality. We have also the formula

(2.10) ζ(3) = ζ(1, 2)

which is proved in many ways in the literature.

There exist interesting generating functions which imply series of relations be-
tween MZV’s. One of them is following (see [BBB]):

(2.11)
∑
m,n≥0

xm+1yn+1ζ(m+2, 1, . . . , 1) = 1−exp

∑
k≥2

xk + yk − (x+ y)k

k
ζ(k)


where the sequence of 1’s has length n.

Some of the generating series are expressed via hypergeometric functions. In the
next example we put

G(d, k, h) =
∑

ζ(d1, . . . , dk),

where in the sum the weight d = d1 + . . . + dk, the depth k and the height h =
] {i : di > 1} are fixed and dk ≥ 2. Let also α and β satisfy

α+ β = x+ y, αβ = z.

Then we have the following identity for

Φ(x, y, z) =
∑

G(d, k, h)xd−k−hyk−hzh−1
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(see [OhZa]):

Φ =
1

xy − z
{1− 2F1(α− x, β − x; 1− x; 1)}(2.12)

=
1

xy − z

1− exp

∑
n≥2

xn + yn − αn − βn

n
ζ(n)

 .(2.13)

This result was generalized in [AOW] and [Li]. Specializing Eq. (2.13) to xy = z
one obtains the formula

(2.14)
∑
d,k,h

G(d, k, h)xd−k−1yk−1 =
∑

ζ(d)xd−k−1yk−1.

In particular,

(2.15)
∑

d1+...+dk=d

ζ(d1, . . . , dk) = ζ(d)

where the depth k is fixed. For k = 2 the latter identity is known as the Euler
formula.

We note also the following Borwein formula for the generating function f1,3(x) =
1− ζ(1, 3)x4 + ζ(1, 3, 1, 3)x8 − . . . :

(2.16) f1,3(x) = f4

(
x/
√

2
)

which follows from a corresponding identity for generating functions for polyloga-
rithms (see [KoZa], [BBBL]). This formula was conjectured by D. Zagier in [Zag1].

It was conjectured in [BBB] and proved in [Zhao] that

(2.17) ζ(3, . . . , 3) = 8k · ζ(1, 2̄, . . . , 1, 2̄)

where

(2.18) ζ(1, 2̄, . . . , 1, 2̄) =
∑

0<m1<n1<...<mk<nk

(−1)n1+...+nk

m1n2
1 . . .mkn2

k

is so-called alternating Euler sum. The generating function for the latter values

(2.19) f1,2̄,...,1,2̄(x) =
∑

ζ(1, 2̄, . . . , 1, 2̄) · (−x3)k

is related with the following sixth order equation:

(1− t)∂(1− t)∂t∂(1 + t)∂(1 + t)∂tt∂tg − x6g = 0.

Namely, this equation has two solutions analytic near t = 0 and of the form ϕ1 = 1+

O(x6) and ϕ2 =
∑

0<m<n
(−t)n
mn2 +O(x6). Then f1,2̄,...,1,2̄(x) = ϕ1(1;x)−x3ϕ2(1;x).

The Zhao’s result implies that f1,2̄,...,1,2̄(x) = f3(x/2) =
∏(

1−
(
x
2n

)3)
.

Some hypergeometric series are also used in irrationality proofs of some zeta
values. Here we refer the reader to the exemplary papers [CFR, Zud2, Hut].
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We finish this section by noticing that some third order linear differential equa-
tions, similar to Eq. (1.1) for d = 3 were considered by F. Beukers with C. Peters
in [BePe] and by S.-T. Yau with B. Lian in [LYau]. In [BePe] the equation

(t4 − 34t3 + t2)∂3z + (6t3 − 153t2 + 3t)∂2z + (7t2 − 112t+ 1)∂z + (t− 5)z = 0,

which is directly related with the recurrence used by R. Apéry in his proof of
irrationality of ζ(3) (see [Ap], [vPo]), turns out to be a Picard–Fuchs equation for
periods of some K3 surface. In [LYau] the authors consider equations of the form(

(t∂)
3 − t

(
3∑
i=1

ri (t∂)
i

))
z = 0;

they are Picard–Fuchs equations for a one-parameter deformations of K3 surfaces
and are used in the mirror symmetry property for K3 surfaces. However the choice
of parameters rj used in [LYau] is different than in Eq. (1.1)d=3.

3. Two bases of solutions

3.1. Basic solutions near t = 0. Recall that we consider Eq. (1.1). The hyper-
geometric function (1.2) is one of the basic solutions. We may represent it as a
series in powers of xd with coefficients depending on t. Also other solutions can be
written in the form g = φ(t;x) = φ0(t)−φ1(t)xd +φ2(t)x2d− . . . , where the coeffi-

cient functions satisfy the series of equations: (t∂)
d
φ0 = 0 and (t∂)

d
φk = t

1−tφk−1

for k ≥ 1. The first equation has d independent solutions which we can choose in
the following form:

(3.1) ϕ1,0(t) = 1, ϕ2,0 = ln
(
xdt
)
, . . . , ϕd,0 =

1

(d− 1)!
lnd−1

(
xdt
)

(this special choice is justified in Section 5). The other equations are solved as
follows:

(3.2) φk(t) =

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1

dtd
1− td

φk−1(td).

It is easy to see that the coefficients φk decrease very fast with k (like 1/k!), so the
obtained solutions are analytic functions in xd ∈ C�0 with known singularities at
x = 0.

The above implies that the basic solutions to Eq. (1.1) are of the form

(3.3) ϕj(t;x) = ϕj,0(t)− ϕj,1(t)xd + ϕj,2(t)x2d − . . . , j = 1, . . . , d,

with ϕj,k given by the integral recurrence (3.2). They can be rewritten as follows:

(3.4)

ϕ1 = 1 +O(t),
ϕ2 = ϕ1 ln

(
xdt
)

+ ψ2,

ϕ3 = 1
2!ϕ1 ln2(xdt) + ψ2 ln(xdt) + ψ3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕd−1 = 1
(d−1)!ϕ1 lnd−1

(
xdt
)

+ . . .+ ψd−1 ln(xdt) + ψd
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where ϕ1, ψ2, . . . , ψd are analytic in t near t = 0. (The above form of the basic
solutions can be explained by the defining equation λd = 0 for the leading exponents
in the solutions φ = tλ + . . . .)

Of course, for us the principal is the first of these solutions. Using the Drinfeld–
Kontsevich formula (2.6) we find

ϕ1,2(t) =

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1

dtd
1− td

=

∞∑
n=1

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1
tn−1
d dtd =

∑ tn

nd
= Lid(t),

i.e. a polylogarithm. Other coefficient functions ϕ1,k are also expressed via poly-
logarithms and we have

ϕ1 = 1− Lid(t)x
d + Lid,d(t)x

2d − . . . ,

which implies formula (1.5).4

Remark 1. Other solutions ϕ2, . . . , ϕd also admit expressions in terms of hy-
pergeometric series. For example, in the case d = 2 we can take the following
perturbation of Eq. (1.1): t

{
(1− t)∂tt∂tg + x2g

}
− µ2g = 0 with small parameter

µ (see [ZZ1]). It has the solutions ηµ and η−µ, where ηµ = Γ(1+x+µ)
Γ(1+x−µ)Γ(1+2µ) · t

µ ·
F (µ+ x, µ− x; 1 + 2µ; t),and therefore

ϕ̂2 = lim
µ→0

(ηµ − η−µ) /2µ

is a solution to Eq. (1.1)d=2 with the logarithmic term (arising from tµ ≈ 1+µ ln t).

Since Γ(1+x+µ)
Γ(1+x−µ)Γ(1+2µ) ≈ 1 + 2µ(Ψ(1 + x) − Ψ(1)), where Ψ denotes the Euler

Psi function and Ψ(1) = −γ is the Euler–Mascheroni constant, it follows that
ϕ̂2 = ϕ2 + 2(Ψ(1 +x) + γ− lnx) ·ϕ1 and the analytic part of the solution ϕ2 equals
ψ2 = ∂

∂µF (µ+ x, µ− x; 1 + 2µ; t)|µ=0.

Moreover, from the expansions Ψ(1 + x) = −γ + ζ(2)x − ζ(3)x2 + ζ(4)x3 − . . .
(see [BE1, Eq. 1.17(5)]) and π

tanπx = 1
x − 2ζ(2)x− 2ζ(4)x3 − . . . (compare [BE1,

Eq. 1.20(3)] we get ϕ̂2(1;x) = − cosπx
x + 1

xf2(x). It implies that the function

ϕ̌2 = ϕ̂2 − x−1 · ϕ1

is a solution to Eq. (1.1), independent with ϕ1 and such that

ϕ̌2(1;x) = −cosπx

x
.

4Also other series ψj appearing in the formulas for ϕj are generating functions for some

polylogarithms. For instance, in [ZZ1] it is proved that in the case d = 2 we have ϕ2,k =

Li2,...,2(t) ln(x2t) − 2
∑k
j−1 Li2,...,3,...,2(t), where only one index in Li equals 3. After a simple

resummation one finds ϕ2(1;x) = 2f2(x) lnx+ 2x2f2(x)
{
ζ(3) + ζ(5)x2 + ζ(7)x4 + . . .

}
. However

we should not regard the latter identity as something important.

Also the below solutions θj are expressed via the polylogarithms and ln s.
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In the case of higher order equations (d > 2) the perturbation relies on adding a
differential operator of lower order with d− 1 small parameters.

3.2. Basic solutions near t = 1. With the variable s = 1− t Eq. (1.1) takes the
form

(3.5) s∂s(1− s)∂s . . . (1− s)∂sg + (−1)dxdg = 0.

Analogously as in Section 3.1 we consider solutions of the form g(1−s) = θj(s;x)
such that

(3.6)
θj = (−xd/(d−1))j

{
θj,0(s) + θj,1(s)xd + . . .

}
, (j = 1, . . . , d− 1),

θd = θd,0(s) + θd,1(s)xd + . . .

where

(3.7) θj,0 =
1

j!
lnj(1−s) = Li1,...,1(s), (j = 1, . . . , d−1), θd,0 = 1−d+θd−1,0 lnxd

and

(3.8) θj,k(s) =

∫
0<sd...<s1<s

ds1

1− s1
. . .

ds2

1− sd−1

dsd
sd

θj,k−1.

It is clear that these solutions are analytic in x ∈ C�0 with known singularities at
the origin.

Their behavior near s = 0 is following:

(3.9)
θj(s;x) = 1

j!

(
xd/(d−1)s

)j
+O(sd) (j = 1, . . . , d− 1),

θd(s;x) = θd−1 ln
(
xdsd−1

)
+ (1− d) +O(s).

(compare [ZZ1, ZZ3]).

3.3. Some relations between the two bases. Firstly, we underline the follow-
ing property which follows directly from independence of the two systems ϕ =

(ϕ1, . . . , ϕd)
>

and θ = (θ1, . . . , θd)
>

of solutions (see [ZZ3]).

Lemma 1. The matrix M = M(x) defined by θ = Mϕ is an analytic function of
x ∈ C�0 with regular singularity at x = 0.

Also the following obvious statement is important in this paper.

Lemma 2. Let

ϕ1(t;x) = A1(x) · θ1(1− t;x) + . . .+Ad(x) · θd(1− t;x)

be the representation of ϕ1(t;x) near t = 1 in the basis θ (with the connection coef-
ficients Aj). Then the generating function (1.6) is expressed via the last connection
coefficient,

fd(x) = (1− d) ·Ad(x).
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In the case of standard hypergeometric equation of second order we have the
following property which is proved by direct checking.

Lemma 3. Let d = 2. Then, if ϕ(t;x) is a solution to Eq. (1.1), then θ(s;x) =
−s∂sϕ(s;x) is a solution to Eq. (3.5). In particular, we have

θ1,2(s;x) = −s∂sϕ1,2(s;x).

This lemma will be used below in explanation of the formula (1.8) for f2(x). On
the other side, it has simple explanation in terms of the MZV duality relations.

Together with Eq. (1.1) one can consider the following equation:

(3.10) [(1− t)∂t]d−1
t∂tg + xdg = 0.

It has one solution of the form

φ1(t;x) = 1− Li1,...,1,2(t)xd + Li1,...,1,2,1,...,,2(t)x2d − . . .

(where each sequence of 1’s is of length d − 1) and hence φ1(1;x) = f1,...,1,2(x) =
1−ζ(1, . . . , 1, 2)xd+. . . is a generating function for multiple zeta values ζ(1, . . . , 1, 2
. . . 1, . . . , 1, 2). But the MZV duality (see Eq. (2.8)) implies that the latter numbers
equal ζ(d, . . . , d). Therefore

φ(1;x) = fd(x)

is the generating function for ζ(d, . . . , d) from Eq. (1.6). Of course, for d =
2 it is nothing new, because the values ζ(2, . . . , 2) are fixed under the duality
transformation.

There exists another relation between Eqs. (1.1) and (3.10). Namely,

if ϕ(t;x) is a solution to Eq. (1.1) near t = 0 then for s = 1 − t ≈ 0 the

function ϑ(s;x) = (s∂s)
d−1

ϕ(s;−x) is a solution to Eq. (3.10) near t = 1 but for
the parameter x replaced with −x, i.e. to the equation

(s∂s)
d−1

(1− s)∂sg + (−x)dg = 0.

4. WKB solutions

Theoretically Eq. (1.1) for large parameter x can be solved using the WKB
method. This means that one represents a solution as a finite sum of terms of the
form

(4.1) xγexS(t)
{
χ0(t) + χ1(t)x−1 + . . .

}
.

In general the series in the above formula are divergent, but this divergence can
be somehow controlled. Below we present three approaches to the WKB solutions
to Eq. (1.1): formal, via normal forms and using the stationary phase formula (in
Section 6).
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The name of the method comes from the names of its authors G. Wentzel [Wen],
H. Kramers [Kr] and L. Brillouin [Bri]. Originally it was used to solve approxi-
mately the Schrödinger equation [Sch], but here we use it to the hypergeometric
equation.

4.1. Testing WKB solutions. These are solution of the form

(4.2) g(t;x) = xγexS(t)χ(t;x−1),

where χ is a power series in x−1. Substituting it into equation (1.1) we get

(4.3) xd
{

(1− t)td−1
(
Ṡ
)d

+ 1

}
χ+ xd−1 1− t

t
P1χ+ . . .+

1− t
t
Pdχ = 0,

where Ṡ = dS/dt and Pj are some differential operators and the first of them is
following:

(4.4) P1χ = d ·
(
tṠ
)d−2

·
{
t∂S · t∂χ+

d− 1

2
(t∂)2S · χ

}
.

It follows that the ‘action’ S(t), the solution to the ‘Hamilton–Jacobi equation’

(4.5) (1− t)td−1
(
Ṡ
)d

+ 1 = 0,

equals

(4.6) S = σSd(t) := σ

∫ t

0

dτ

τ (d−1)/d(1− τ)1/d
, σ = ςj+1/2, j = 0, . . . , d− 1,

where ς is the root of unity from Eq. (1.3). These d possibilities correspond to d
solutions, which can be expanded as follows

(4.7) gσtest(t;x) = (σx)
γ
eσxSd(t)

{
χ0(t)− χ1(t)

σx
+
χ2(t)

(σx)
2 . . .

}
, γ = −d− 1

2
.

The functions χj satisfy the ‘transport equations’

P1χ0 = 0, P1χ1 = P2χ0, . . .

where in definition of Pj we use S = Sd. The first transport equation is easy: we

have χ0 =const·
(
tṠd

)(1−d)/2

. We choose it in the form

(4.8) χ0(t) =

(
1− t
t

)(d−1)/2d

.

To solve the other equations one introduces the new variable

(4.9) u =

(
t

1− t

)1/4

for d = 2 and u =

(
t

1− t

)1/d

for odd d ≥ 3;

thus χ0(t) = u−1 (d = 2) or χ0(t) = u(1−d)/2 (odd d ≥ 3). The following result
was proved in[ZZ1] for d = 2 and in [ZZ3] for d = 3 but it holds in general case.
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Lemma 4. The functions χj(t), j > 1, can be chosen as Laurent polynomials in

u, such that the term with u−1 (respectively u(1−d)/2) is absent.5

For example, when d = 2 we have

χk+1(t) = (Tχk)(u) =
1

8u

∫ u 1

v
∂u
(
v(1 + v4

)
∂uχk)dv.

This gives

(4.10) χ1 = −
(
u−3 + 3u

)
/16, χ2 = 3(3u−5 − 5u3)/83.

A general algebraic formula can be obtained using the functions ωk(u) = (2k −
1) u−2k−1 + (−1)k+1(2k + 1) · u2k−1, k = 1, 2, . . . , which satisfy the recurrent

relations: Tω1 = − 3·1
8·4ω2, Tωk = − 4k2−1

8

{
ωk+1

k+1 −
ωk−1

k−1

}
. It follows that χk(t) =

ak,kωk(u) + ak,k−2ωk−2(u) + . . . , for some coefficients ak,l which are calculated
inductively. The latter coefficients grow very fast with k; for instance, we have

ak,k = (2k − 1) (−1/8)
k−1

((2k − 3)!!)2/(2k − 2)!!.

Definition 1. The formal expressions

gσtest(t;x) ∼ eσxSd(t)

(σx)
(d−1)/2

·
(

1− t
t

)(d−1)/2d

,

σ = ςj+1/2, j = 0, . . . , d − 1, defined in equation (4.7) with the coefficients χj(t)

defined as above (without u−1 or u(1−d)/2 for j > 1) are called the testing WKB
solutions associated with t = 0.

We introduce also another system of testing WKB solutions associated with
s = 1− t = 0 :

hσtest(s;x) = ξσ(σx)d/2e−σxSd(1) · gσtest(1− s;x)(4.11)

∼
√
−σx · e−σx(Sd(1)−Sd(1−s)) ·

(
s

1− s

)(d−1)/2d

,

where ξσ ∈ S1.

Above we agree that for 0 < t < 1 and arg x = 0 we take:6

g± ∼ exp√
±ix

= e∓iπ/4
exp√
x
, h± ∼

√
x

±i
exp = e∓iπ/4

√
x exp

5The general solution to the system of transport equations contains infinitely many constants,
to each particular solution χj(t) we can add cjχ0(t) for a constant cj . It the case of Schrödinger

equation one avoids analogous problem of arbitrary constants of integration by assuming that the
wave functions (representing bound states of a quantum system) vanish at infinity; that restriction
leads to so-called Born–Sommerfeld quantization condition (see [Sch]).

6In [ZZ1] the notations g+
0 and g−0 for gitest and g−itest, i = eiπ/2, are used. In [ZZ3] one uses

the notations g−0 , g
ε
0, g

ε̄
0 for gσtest, σ = −1, ε = eiπ/3, ε̄. Also for hσtest analogous notations are used.
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for d = 2 and

gσ ∼ exp

σx
, h− ∼

√
x exp, hε = ε̄

√
x exp, hε̄ ∼ ε

√
x exp,

(σ = −1, ε, ε̄) for d = 3.

4.2. Formal reduction to normal form. Here we present an alternative way
to derive WKB type solutions to equations with a parameter like Eq. (1.1). The
obtained basic WKB solutions gσnorm differ from the testing WKB solutions gσtest

from Definition 1 by factors which depends on x. There are reasons to regard the
new solutions are more natural than the testing solution.

In the presentation we describe only the simplest case d = 2. Here we will use
the notations g± (see Note 6).

Putting

(4.12) g1 = g, g2 = ġ/x

we rewrite Eq. (1.1) in form of the following first order system

d

dt

(
g1

g2

)
= A(t;x)

(
g1

g2

)
,

where

A = xA1(t) +A0(t), A1 =

(
0 1

1/t(t− 1) 0

)
, A0 =

(
0 0
0 −1/t

)
.

The normal form of such system is a diagonal (or independent) system obtained
by means of a formal linear change which depends on t.

The first step is the diagonalization of the matrix A1(t) with the eigenvalues

(4.13) λ±1 (t) = ±i/
√
t(1− t) = ±i · Ṡ2(t).

We put

(4.14) X+ = λ+
1 (t)g1 + g2, X− = λ−1 (t)g1 + g2

and we get

(4.15)
Ẋ+ = λ+

1 (t)xX+ − 1
4

(
3
t −

1
1−t

)
X+ − 1

4

(
1
t + 1

1−t

)
X−,

Ẋ− = λ−1 (t)xX− − 1
4

(
1
t + 1

1−t

)
X+ − 1

4

(
3
t −

1
1−t

)
X−.

The general theory says that such system can be diagonalized by means of an
infinite series of ‘shearing’ transformations. Let us apply some initial changes, in
order to compare the obtained (partial) normal form with the results of the previous
and next subsections. We put

(4.16) X+ = X+
1 +

(
b1
x

+
b2
x2

+ . . .

)
X−1 , X− =

(c1
x

+
c2
x2

+ . . .
)
X+

1 +X−1 ,

where bj , cj depend on t, and we expect to obtain the following separated system

(4.17) Ẋ+
1 = λ+(t;x)X+

1 , Ẋ−1 = λ−1 (t;x)X−1 ,
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λ±(t;x) = λ±1 (t)x+ λ±0 (t) + λ±−1(t)x−1 + . . .

The resulted system of equations onto bj , cj , λ
±
j is easily solved; moreover, in

algebraic way. Using the variable u = (t/(1− t))1/4
(see Eq. (4.9)) we get b1 =

−c1 = −i/8 (t(1− t))1/2
= −i(1 + u4)/8u2, b2 = c2 = (1− 2t) /32t(1 − t) =(

1− u8
)
/32u4 and λ±0 = ∓ 1

4

(
3
t −

1
1−t

)
, λ±−1 = ∓i/32 (t(1− t))3/2

= ∓i(1 +

u4)3/32u6, λ±−2 = (2t− 1)/128t2(1− t)2 = (u4 − 1)(1 + u4)4/128u8.

General solutions to the system (4.17) are of the form

(4.18)
X+

1 = K+
eixS(t)

t3/4(1−t)1/4 exp
{ −i

16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 + 1

u4

)
+ . . .

}
,

X−1 = K−
e−ixS(t)

t3/4(1−t)1/4 exp
{

i
16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 + 1

u4

)
+ . . .

}
,

with arbitrary constants K± (which may depend on x). Substituting this to Eq.
(4.16) and then to g = 1

2λ (X+ −X−) (see Eq. (4.14)) one finds a general solution
to Eq. (1.1) in the form

g = K+g
+
norm(t;x) +K−g

−
norm(t;x),

where

(4.19) g±norm(t;x) =
(
1 + (5/256)x−2 + . . .

)
· g±test(t;x)

and g±test are the testing WKB solutions (see Definition 1 and Eq. (4.7)).

For general degree d ≥ 2 we have g1 = g, g2 = ∂g/x, . . . , gd = ∂d−1g/xd−1 in an

analogue of Eqs. (4.12), λσ1 = σṠd(t), σ = ςj+1/2, j = 0, . . . , d − 1, in Eq. (4.13)
and we finally obtain the diagonal system

(4.20) Ẋσ
1 = λσ(t;x)Xσ

1 , λσ = λσ1 (t)x+ λσ0 (t) + λσ−1(t)x−1 + . . . ,

with solutions Xσ
1 = Kσ · exp

∫ t
0
λσ(τ ;x)dτ, which imply the formula

(4.21) g =
∑
σ

Kσ · gσnorm(t;x)

for a general (formal) solution to the hypergeometric equation (1.1).

Definition 2. The solutions gσ are called the normal WKB solutions associ-
ated with the point t = 0. Corresponding normal WKB solutions associated

with the point s = 1 − t = 0 are hσnorm(s;x) = ξd (σx)
d/2

e−σxSd(1)gσ(1 − s;x)
(where ξd is the same as in Definition 1).

The normal WKB solutions are also defined uniquely, because the reduction
to the normal form is unique and essentially algebraic. They seem to be more
important than the testing WKB solutions gσtest, because we can show that they are
represented by analytic functions in some sectorial domains (due to some Birkhoff’s
theorem discussed below).

Note also that the normal form system (4.20) is more natural than the WKB
solutions gσnorm, because the latter involve the initial condition Sd(0) = 0.
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Remark 2. The relation between gσnorm and gσtest is of the form

gσnorm(t;x) = Cσnorm(x−1) · gσtest(t;x),

where Cσnorm(x−1) = 1 + O(x−1) are formal series. It seems that all the series
Cσnorm(x−1) are the same for any index σ and depend on x−d. This is proved for
d = 2 in [ZZ1]. Also from Eq. (4.19) it follows that these series are nontrivial.

4.3. Analytic normalization. We have seen that the process (which is standard)
of successive reduction of Eq. (4.15) to the normal (diagonal) form is essentially
algebraic. It is also unique. Unfortunately, it is divergent.

The problem of analytic interpretation of the WKB method is highly nontrivial.
There exist known results about WKB functions which are analytic in some rather
special domains and have the same asymptotic expansions as the formal WKB
series. But those analytic functions undergo dramatic changes when the domains
are changed; this is the famous Stokes phenomenon studied in Section 7.

Additional complication arises from the dependence of two variables: x (which
is large) and t (which is bounded). In a traditional approach, used mostly by the
physicists [He, BNR], the parameter x is real and the variable t may vary in some
complex domain. In that domain there exist so-called Stokes lines which separate
domains of uniqueness of the WKB functions. Several Stokes lines meet at so-called
turning points, which are the ramification points of the derivative Ṡ(t) = dS/dt

of the ‘action’ (like Ṡ(t) =
√
q(t) for the Schrödinger equation ψ̈ = −x2q(t)ψ). In

our situation, the fact that Ṡ(t) is infinite at t = 0 and t = 1 causes additional
complication.

Since our principal aim is to study analytic properties of the connection coeffi-
cient Ad(x) in Lemma 2, we should rather consider complex x, while t can stay real.
When one allows arg x to vary the Stokes lines also should vary in a controllable
way (see [DePh]). But this controlling is rather troublesome and we prefer to use
our own method.

One ingredient of this method is exemplified in Theorem 1 below (we refer the
reader to our original work [ZZ2]). It allows to treat analytically WKB functions
in two domains in C × C = {(t, x)} : U0 × V∞ and U1 × V∞, where U0,1 are
neighborhoods of t = 0, 1 and V∞ = (C,∞) . In these domains we are able to
control perfectly the Stokes lines and their x−dependence (see Section 7).

Another ingredient (realized in this section) is an analogue of a theorem due
to G. D. Birkhoff [Bir] about WKB functions analytic in domains like W × S
where W is a neighborhood of the ‘interior’ of the segment [0, 1] in the t−plane
and S is a sector in the x−plane. The above domains have non-empty suitable
intersections which allows to provide an analytic realization of formal WKB type
series for solutions of differential equations and of the connection coefficient Ad(x).
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The reduction (4.16) is divergent (as a power series in x−1) and the WKB
solutions g± are only formal solutions. G. Birkhoff [Bir] was the first who proved
that such a system can be diagonalized analytically in some sectorial domains.
Below we present a scheme of the Birkhoff’s proof in the case d = 2.

We apply a change

(4.22) X+ = X+
1 + V 12(t)X−1 , X− = V 21(t)X+

1 +X−1

which should transform system (4.15), i.e.

d

dt

(
X+

X−

)
=

(
B11 B12

B21 B22

)(
X+

X−

)
,

to the diagonal form

(4.23) Ẋ+
1 = D+(t)X+

1 , Ẋ−1 = D−(t)X−1 .

We get D+ = B11 + B12V 21, D− = B21V 12 + B22 and two independent Riccati
equations

V̇ 12 = B11V 12 − V 12B22 +B12 − V 12B21V 12,

V̇ 21 = B22V 21 − V 21B11 +B21 − V 21B12V 21.

The latter differential equations are rewritten in form of the following integral
equations:

V 12(t) =

∫
Γ1(t)

eP (t)−P (τ)
{
B12(τ)− V 12(τ)B21(τ)V 12(τ)

}
dτ,(4.24)

V 21(t) =

∫
Γ2(t)

eP (τ)−P (t)
{
B21(τ)− V 21(τ)B12(τ)V 21(τ)

}
dτ,(4.25)

P (t) =
∫ t

0
(B11(ι)−B22(ι))dι = 2ixS2(t) + . . . . Here Γ1(t) and Γ2(t) are some well

chosen paths in the τ−plane.

One would like to treat Eqs. (4.24)–(4.25) as fixed point equations in suitable
functional spaces. For this the nonlinear operators defined by the right-hand sides
should be contracting, at least bounded (see [Was, Zo3]).

The crucial element in the proof of the latter property is the possibility to
estimate the factors e±(P (t)−P (τ)) ≈ exp {±2ix(S2(t)− S2(τ))} . Thus, if t ∈ (0, 1)
is real, then for Imx > 0 we take the integration paths as segments Γ1 = [0, t] and
Γ2 = [1, t] ; when Imx < 0 we take Γ1 = [1, t] and Γ2 = [0, t] .

But the entries Bij(t) of the matrix B have poles at t = 0 and t = 1. Moreover,
we want to extend the range of arg x and to allow complex values of t. We choose
three small constants α > 0, β > 0 and 0 < τ0 << β and define the following
domains: W = {t = t1 + it2 : β < t1 < 1− β, |t2| < βt1(1− t1)} ⊂ C (a neigh-
borhood of the open segment (β, 1− β) ⊂ R) and Du,Dd ⊂ C2 (‘up’ and ‘down’)
by the conditions

ImxS2(t), Imx(S2(1)− S2(t)) > −α, t ∈ W (for Du),

ImxS2(t), Imx (S2(1)− S2(t)) < α, t ∈ W (for Dd).
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If (t, x) ∈ Du then the contour Γ1 begins at τ = τ0 and ends at τ = t and the
path Γ2 begins at τ = 1 − τ0 and ends at τ = t and with Imx(S(t) − S(τ)) < 0.
For (t, x) ∈ Dd the choice of the contours is opposite.

Solving the integral equations in the domains Du and Du one obtains analytic
solutions g±u (t;x) and g±d (t;x) respectively. They have the same formal asymptotic
expansions as the principal WKB solutions g±(t;x).

We note the conjugation symmetry of the above construction:

g+
u (t;x) = g−d (t̄; x̄), g−u (t;x) = g+

d (t̄; x̄).

In the case of general degree d ≥ 2 the corresponding system of Riccati type
equations consists of d(d − 1) equations for the off-diagonal entries V σρ(t) of the
matrix V (t) (with 1’s on the diagonal) such that X = V X1. The corresponding
integral equations take the form

(4.26) V σρ(t) =

∫
Γσρ

e(σ−ρ)x(Sd(t)−Sd(τ))Fσρ(τ, V (τ))dτ.

Here there are 2d domains D1,2,D2,3, . . . ,D2d,1 being neighborhoods of the sectorial

sets [β, 1− β] × Sk,k+1, where Sk,k+1, k = 1, . . . 2d (and 2d + 1 = 1), are closed
sectors defined by division of a neighborhood of x =∞ by the lines arg x = jπ/d,
j = 0, . . . , d− 1. One obtains solutions gσk,k+1(t;x) analytic in the domains Dk,k+1.
From the construction they satisfy the following symmetry properties:

gσk+2,k+3(t, ςx) = gςσk,k+1(t;x),(4.27)

gσk,k+1(t;x) = gσ̄2d−k+1,2d−k+2(t̄; x̄),(4.28)

ς = e2πi/d.

Let us summarize the results of this subsection in the following

Proposition 1. For d > 2 there exist 2d systems of solutions (gσk,k+1), k =

1, . . . , 2d, analytic in the domains Dk,k+1 (defined above) whose formal expansions
are the same as for the normal WKB solutions gσnorm from Definition 2. They
satisfy relations (4.27) and (4.28).

For d = 2 there exist two such systems (gσu) =
(
gσ1,2
)

and (gσd ) =
(
gσ2,1
)

analytic
in the domains Du = D1,2 and Dd = D2,1.

5. Bessel approximations

5.1. Bessel type equations and their basic solutions. Consider series (1.2)
when x→∞ and

y = xdt
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is finite. Then we get

(5.1) ϕ1(t;x) ≈ Φ1(y) :=

∞∑
n=0

(−y)n

(n!)d
=0 Fd−1(1, . . . , 1;−y),

i.e. a confluent hypergeometric function. For d = 2 the function Φ1 is expressed
via a Bessel function:7

(5.2) Φ1(y)|d=2 = J0(2
√
y).

The function Φ1 satisfies a special confluent hypergeometric equation, which we
call the Bessel type equation:

(5.3) ∂y(y∂y)d−1G+G = 0.

The other independent solutions to Eq. (5.3) are

(5.4)

Φ2(t) = Φ1(y) ln y + Ψ2(y),

Φ3(t) = 1
2!Φ1 ln2 y + Ψ2 ln y + Ψ3(y),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φd(y) = 1
(d−1)!Φ1 lnd−1 y + 1

(d−2)!Ψ2 lnd−2 y + . . .+ Ψd(y)

(where Ψj are some entire functions), they approximate the solutions ϕj .

Of course, Eq. (5.3) is obtained from Eq. (1.1) by the change t = y/xd, ∂t =
xd∂y and taking limit as x→∞. We shall do analogous change with Eq. (3.5) by
taking x large and

z = xdsd−1

finite. The obtained Bessel type equation is following:

(5.5) (1− d)d · z
1
d−1

(
z
d−2
d−1 ∂z

)d
H +H = 0.

It has basic solutions of the form

(5.6)
Θj(z) = 1

j!z
j/(d−1)Fj(z) = 1

j!z
j/(d−1) · (1 +O(z)), (j = 1, . . . , d− 1),

Θd(z) = Θd−1(z) ln z + Ξd(z),

where Fj(z) are some concrete confluent hypergeometric series and Ξd is an entire
function.

For d = 2 we have

(5.7) Θ1|d=2 =
√
zJ1(2

√
z)

7Recall that the Bessel function with index µ equals Jµ(w) =
∑∞
n=0

(−1)n

Γ(µ+n−1)n!

(
w
2

)2n+µ
.
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and for d = 3 we have

Θ1|d=3 =
√
z

(
1 +

∞∑
n=1

zn

(2n+ 1)!(2n− 1)!!

)
=
√
z ·0 F2

(
α, β;

z

8

)
,(5.8)

Θ2|d=3 = 2

∞∑
n=1

zn

(2n)!(2n− 2)!!
= z ·0 F2

(
γ, δ;

z

8

)
,(5.9)

where α = δ = n+ 1/2, β = n− 1/2, γ = n+ 1.

5.2. Formal and analytic WKB solutions. The Bessel type equation (5.3) has
irregular singular point at y = ∞ and equation (5.5) has irregular singular point
at z =∞. Any linear meromorphic differential equation with an irregular singular
point has uniquely defined (up to a multiplicative constants) formal solution which
we call the WKB solutions.

For Eq. (5.3) the WKB solutions are of the form

(5.10) Gσ(y) =
(
σy1/d

)γ
edσy

1/d

{
1− a1

σy1/d
+

a2(
σy1/d

)2 − . . .
}
, γ = −d− 1

2
,

and the WKB solutions for Eq. (5.5) are following:

(5.11) Hσ(z) =
√
−σz1/de(d/(1−d)σz1/d

{
1 +

b1
σz1/d

+
b2(

σz1/d
)2 + . . .

}
,

where σ = ςj+1/2, j = 0, . . . , d−1, (as usual), the choice of the square root
√
−σz1/d

is defined in Definition 1 and the coefficients are computed recursively.

The dependence of the above functions on the roots y1/d and z1/d is not useful
in calculations. Often we will use the variables

(5.12) v = y1/d, w = z1/d

and denote corresponding WKB solutions as

(5.13) G̃σ(v) = −Gσ(v3), H̃σ(w) = Hσ(wd).

They satisfy the following Bessel type equations:

(v∂v)
dG̃+ dd · vdG̃ = 0,(5.14)

(1/d− 1)
d · w

d
d−1

(
w
−1
d−1 ∂w

)d
H̃ + dd · H̃ = 0.(5.15)

Like in Section 4.2 we can transform each of the Eqs. (5.14)–(5.15) to a corre-
sponding linear system which is next diagonalized using shearing transformations.
The obtained diagonal system has basic solutions which must equal the WKB so-
lutions from Eqs. (5.13). This formal reduction of the Bessel type equations to
the normal form is in complete agreement with the analogous reduction of the
hypergeometric equation.
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But when we want to obtain analytic normal forms, then one encounters some
differences with what is done in Section 4.3. For example, in the case of Eq. (5.14)
one arrives to an analogue of Eq. (4.26), i.e.

V σρ(v) =

∫
Γσρ

ed(σ−ρ)(v−τ)Fσρ(τ, V (τ))dτ,

but now the paths Γσρ = Γσρ(v) of integration are chosen rather differently.

Consider sectors S1, . . . , S2d with angles 2π/d − δ (δ > 0 small) and with the
bisectrices arg v = 0, π/d, . . . , (d − 1)π/d. These bisectrices Rj correspond to the
situations when Im (σ − ρ) v = 0 (for some σ and ρ) and are called the rays of
division associated with the pair (σ, ρ) .

With given unordered pair {σ, ρ} two rays of divisionRj andRj+d are associated
(here j+d is taken mod 2d). Consider larger sectors Sj−[d/2]∪. . .∪Sj∪. . .∪Sj+[d/2]

and Sj+d−[d/2]∪ . . .∪Sj+d∪ . . .∪Sj+d+[d/2] with the above rays as their bisectrices;
they cover a neighborhood of v = ∞. For v ∈ . . . ∪ Sj ∪ . . . (respectively v ∈
. . .∪ Sj+3 ∪ . . .) the path Γσρ(v) runs parallel to the ray Rj from τ =∞ to τ = v.

Due to the fact that the factors ed(σ−ρ)τ in the corresponding integral equations
are bounded for τ ∈ Γσρ(v) the solutions to the integral equations exist and are
analytic in the sectors Sk.

We denote the analytic solutions in the sectors Sj obtained above by

(5.16) G̃σj (v), v ∈ Sj , j = 1, . . . , 6.

They are formally equivalent to the formal WKB solutions form Eqs. (5.10)–(5.13).
(But for d = 2 we have only two sectors S1 = Sr (right)and S2 = Sl (left) with
bisectrices R1 = {arg v = 0} and R2 = {arg v = π} and angles 2π− δ and two sets

of solutions G̃±r,l(v).

Analogously we obtain systems of analytic solutions to Eq. (5.15):

(5.17) H̃σ
j (w), w ∈ Sj , j = 1, . . . , 2d.

Remark 3. Functions (5.16) and (5.17) were constructed by solving corresponding
integral equations. But there exist explicit integral formulas for analytic WKB solu-
tions to Bessel type equations (and to general hypergeometric confluent equations)
due to A. Duval and C. Mitschi [DuMi] (see also [ZZ3]). For example, for d = 3
the following Mellin–Barnes integral

G−DM (y) =
1

2πi

∫
γ

Γ3(−τ)yτdτ,

where γ is a path from τ = −i∞ to τ = +i∞ which leaves the poles τ = 1, 2, . . . of
the Gamma function from the right, defines a solution to the Bessel type equation
(5.3) for d = 3. (The function G−DM is a particular case of the so-called Meijer

G–functions, [Me] and [BE1]). It turns out that G−DM (y) is analytic in the sec-

tor
{
−π − ε < arg y1/3 < π + ε

}
and has the form G−DM = e−3y1/3y−1/3Ω0(y−1/3)

(like G−).
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Moreover other WKB solutions can be taken in the form

GεDM (y) = e3εy1/3y−1/3Ω0(ε̄y−1/3), Gε̄DM (y) = e3ε̄y1/3y−1/6Ω0(εy−1/3)

(where the notations −, ε, ε̄ are like in Note 6). The new WKB solutions H−DM ,
Hε
DM , H

ε̄
DM to the Bessel type equation (3.7) are defined similarly, via the following

Mellin–Barnes integral:

H−DM (z) =
1

2πi

∫
γ

Γ(1− τ)Γ(1/2− τ)Γ(−τ)(−z/8)τdτ

= e
3
2 z

1/3

z1/6Ω1(z−1/3).

Also for other degrees d 6= 3 Duval and Mitschi define WKB solutions GσDM and
Hσ
DM analytic in suitable sectors about infinity.

Finally, we note that analyticity of the WKB solutions in sectors can be proved
in still another way, using the fact that the formal WKB solutions are defined via
Gevrey type series, by applying corresponding Borel and Laplace transforms. We
refer the reader to the books of W. Balser [Bal] and J.-P. Ramis [Ram].

5.3. Equivalences of hypergeometric equation and its Bessel approxima-
tions. Importance of the above approximations can be seen from the following
result, which is a special case of a more general theorem proved in [ZZ2, Theorem
2]. Let Φ = (Φ1, . . . ,Φd), Θ = (Θ1, . . . ,Θd) denote the bases (5.1)–(5.4) and (5.6)
and ϕ, θ be corresponding bases from Section 3.

Theorem 1. There exist matrix-valued functions H0(t) = I + O(t) and H1(s) =
I + O(s), defined in a neighborhood of t = 0 and s = 1 − t = 0 in C and analytic
there, such that

ϕH0 = Φ, θH1 = Θ.

Proof. Let

F0 =

 ϕ1 . . . ϕd
. . . . . . . . .

∂d−1
t ϕ1 . . . ∂d−1

t ϕd

 , G0 =

 Φ1 . . . Φd
. . . . . . . . .

∂d−1
t Φ1 . . . ∂d−1

t Φd


be the fundamental matrices associated with the bases ϕ (see Eq. (3.4)) and Φ and
∂tΦj = xd∂yΦj means differentiation with respect to the time t. Then we have

H0(t;x) = F−1
0 G0.

Analogously the fundamental matrices F1 and G1 associated with the fundamental
systems θ and Θ define the matrix-valued function

H1(s;x) = F−1
1 G1.

It is clear from Section 3 that the matrices F0(t, x) and G0(t, x) are analytic in
(t, x) for t ∈ (C�0, 0) and x ∈ C�0. It was observed in [ZZ2] that the matrices F0
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and G0 have the same monodromy properties as t turns around 0 and as x turns
around 0 (or around ∞) and have the same singularities at t = 0 and at x = 0.
Moreover, from the analysis in Sections 6 and 7 it follows that these matrices have
almost the same asymptotic as x → ∞, i.e. in sectorial domains. Therefore the
matrix valued function H0 is single valued in the both variables and is bounded
at possible singularities: t = 0, x = 0 and x = ∞. It follows that it is analytic in
t ∈ (C, 0) and constant in x ∈ C.

The same arguments prove that H1(s;x) is holomorphic in s ∈ (C, 0) and con-
stant in x ∈ C.

Theorem 2 from [ZZ2] is a generalization of a theorem of W. Wasow from [Was]
about reduction of equations of the form d2x/dt2 =

{
λ2ta(t) + λb(t, 1/λ)

}
x, a(0) =

1 (with analytic germs a and b and large λ) to the Airy equation ∂2
T y = Ty,

T = tλ2/3, which is also of the Bessel type. In [ZZ2] a slightly weaker result was
proved; namely, it was stated thatH0(t, x) is analytic in t ∈ (C, 0) and x−1 ∈ (C, 0).

Definition 3. The functions gσprinc = GσH−1
0 are called the principal WKB

solutions near t = 0 to hypergeometric equations (1.1) and the functions hσprinc =

HσH−1
1 are called the principal WKB solutions near s = 1− t = 0 to the same

equation.

Remark 4. Since the WKB solutions Gσ to Eq. (5.3) and Hσ to Eq. (5.5)
are formal the principal WKB solutions gσprinc and hσprinc are also only formal.
Their relations with the formal and normal WKB solutions from Definition 1 and
Definition 2 are of the form

(5.18) gσprinc = Kσ
princ(x−1) · gσtest, hσprinc = Lσprinc(x−1/(d−1)) · hσtest

for some series Kσ
princ(x−1) = 1+O(x−1) and Lσprinc(x−1/(d−1)) = 1+O(x−1/(d−1)).

Here Lσprinc is a series in powers of x−1/(d−1) because the hypergeometric equation

(1.1) is a perturbation of the Bessel type equation (5.5) and in the perturbation we
encounter powers of s = z1/(d−1)x−d/(d−1); in fact we solve it by solving a system
of equations in variations (see [ZZ3]).

Therefore

(5.19) gσprinc(1− s) = ξ−1
d

Kσ
princ

Lσprinc

(σx)
−d/2

eσxSd(1) · hσprinc(s).

We have not calculated the series Kσ
princ(x−1) and Lσprinc(x−1), but there is no

reason to expect that they are equal. But Eq. (4.19) above and Lemma 5 below
suggest that probably Kσ

princ(x−1) = Lσprinc(x−1) = Cnorm(x−2) = 1 + (5/256)x−2 +
. . . for d = 2.

On the other hand, if we choose analytic versions (i.e. in some sectors) of the
formal WKB solutions to Eqs. (5.3) and (5.5), like in Section 5.2, then by applying
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the operators H−1
0 and H−1

1 to them we obtain analytic principal WKB solutions
in corresponding domains.

Moreover, the domain of definition of H0(t) is not limited to a small neighbor-
hood of t = 0. H0 is analytic in a disc {|t| < 1− ε0} for small ε0. Similarly H1(s)
is analytic in {|s| < 1− ε0} . These two domains have quite big intersection.

Finally, because there exist analytic (in sectors) versions Gσj and Hσ
j of the

formal WKB functions, application of H−1
0 and H−1

1 to them gives corresponding
analytic principal WKB solution to the hypergeometric equation.

Definition 4. We introduce the following WKB type formal functions

Fσ(x) =
gσprinc(1− s;x)

hσprinc(s;x)
= ξ−1

d (σx)
−d/2

eσxSd(1)ωσ(x−1/(d−1)).

Here ωσ(x−1/(d−1)) = Kσ
princ(1/x)/Lσprinc(1/x1/(d−1)) and

S2(1) = π and S3(1) = 2π/
√

3.

We have

F± =
1

x
e±ixπω±(1/x) ,(5.20)

Fσ = ±e
−2xσπ/

√
3

x3/2
ωσ
(
x−1/2

)
,(5.21)

for d = 2 and d = 3 respectively; in Eq. (5.21) ± = + for σ = ε, ε̄ and = − for
σ = −1.

In the case d = 3 the series ωσ(x−1/2) are not single valued. We can write
instead

x−3/2ωσ± = ±
√
x · x−2ωσ0 (x−1) + x−2ωσ1 (x−1).

Then we have six WKB type functions

(5.22) Fσ± = x−3/2e2σxπ/
√

3ωσ±.

In the case of odd d > 3 there are d(d− 1) similar WKB functions.

6. Integral representations and stationary phase formula

6.1. Integral formulas. Some of the series defining solutions of hypergeometric
and Bessel type equations have integral representations. We begin with the stan-
dard representation of the Bessel functions:

(6.1)
Jn(w) = 1

2πi

∮
|u|=1

exp
(w

2
(u− 1/u)

) du

un+1

= 1
2π

∫ π
−π exp (iw sinα) e−inαdα.

This formula was obtained by Bessel and can be found in the literature (see
[BE2, GM]). Let us recall its simple proof whose argumentation can be used in
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more general situations. The series
∑∞
m=0(−1)m(w2/4)m+n/2/(m + n)!m! which

defines Jn(w) admits the following residue representation:

resu=0
1

un+1

(∑ (wu/2)
m

m!

)(∑ (−w/2u)
m

m!

)
.

Next we use the Cauchy formula.

For a non-integer index µ we have the following Schläfli representation:

Jµ(w) =
1

2π

∫ π

−π
exp (i(w sinα− µα)) dα

− sinπµ

π

∫ ∞
0

exp (−w sinhβ − µβ) dβ.

(6.2)

This follows from some generalization of the residuum formula for Jn with integer n.
We have Jµ(w) = 1

2πi

∫
C

exp
(

1
2w (u− 1/u)

)
u−µ−1du where C is a contour which

begins and ends at u = −∞ and surrounds u = 0 in positive direction. Next the
contour C is deformed to two half-lines along (−∞,−1) (parametrized by −eβ)
and the circle |u| = 1. For more details we refer reader to [BE2, Eq. 7.3(9)].
(In the original Schläfli formula the first integral in Eq. (6.2) is replaced with
1
π

∫ π
0

cos (w sinα− µα) dα.)

Now we are ready to present a multidimensional contour integrals. We have

(6.3) Φ1 =

(
1

2πi

)d−1 ∫
· · ·
∫

|Q0|=...=|Qd−2|=1

exp

−y1/d
d−1∑
j=0

ςjPj


d−2∏
j=0

dQj
Qj

for the generalized Bessel function (5.1). Here and below ς = e2πi/d and

(6.4)
P0 = Q0, P1 = Q1Q

−1/(d−1)
0 , . . . , Pd−2 = Qd−2Q

−1/2
d−3 . . . Q

−1/(d−1)
0 ,

Pd−1 = Q−1
d−2Q

−1/2
d−3 . . . Q

−1/(d−1)
0 ;

thus
∏

Pj = 1.

For the hypergeometric function (1.2) we get the following formula:

(6.5) ϕ1 =

(
1

2πi

)d ∫
· · ·
∫

|Q0|=...=|Qd−2|=1


d−1∏
j=0

(
1− t1/dPj

)ςj
x
d−1∏
j=0

dQj
Qj

.

In the proof one uses the expansions

(1− z)−a =
∑ Γ(a+ n)

Γ(a)n!
zn

and

dFd−1(a1, . . . , ad; 1, . . . , 1; t) =
∑ Γ(a1 + n)

Γ(a1)n!
. . .

Γ(ad + n)

Γ(ad)n!
tn.
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Using the Schläfli formula (6.2) we can prove the formula (with the Euler–Mascheroni
constant γ)

(6.6)
(Φ2 + 2γΦ1) |d=2 = 1

iπ

∫ π
−π α exp

(
2i
√
y sinα

)
dα

−2
∫∞

0
exp

(
−2
√
y sinhβ

)
dβ

for another solution limν→0
1
ν

{
Jν(2
√
y)− J−ν(2

√
y)
}

to the Bessel type equation
(5.3) for = 2.

The Schläfli formula admits a generalization to the case of hypergeometric inte-
grals (see [ZZ1]). It allows to prove the following formula for the solution ϕ̂2 (for
d = 2) from Remark 1:

(6.7)
ϕ̂2|d=2 = 1

2πi

∫
|v|=1

(
1−
√
tv

1−
√
t/v

)x
ln
(

1−
√
tv

v2(1−
√
t/v)

)
dv
v

−
∫ 1/
√
t

1

(
1−
√
tv

1−
√
t/v

)x {
sinπx
π ln

(
1−
√
tv

v2(1−
√
t/v)

)
+ 3 cosπx

}
dv
v .

Unfortunately, we do not have integral formulas for the basic solutions θj to the
hypergeometric equation near 1 − t = 0 for odd d > 2. (For d = 2 we can use the
duality formula from Lemma 3.) The reason for this is that the recurrence relations
for the coefficients in the series defining θj are of length greater than two.

Fortunately, we can find such formulas for the solutions Θj to the Bessel type
equation (5.5).

In the case d = 2 the duality relation implies

Θj(z)|d=2 = −z∂zΦj(z), j = 1, 2,

and, in particular,

Θ1(z)|d=2 =
√
zJ1(2

√
z).

For d = 3 we have the following formulas (for the proofs see [ZZ3]):

(6.8)
Θ1|d=3 = − z

1/6

8π

·
∫
C′

dτ
(1−τ)3/2

∫ π
−π dα sinh

(
z1/3eiα/2

)
exp

(
1
2z

1/3e−iατ
)
e−iα/2,

(6.9) Θ2|d=3 =
z1/3

2π

∫ π

−π
cosh

(
z1/3eiα/2

)
exp

(
1

2
z1/3e−iα

)
e−iαdα.

In Eq. (6.8) C ′ is a contour which begins and ends at τ = 0 and surrounds τ = 1 in
positive direction. (The third solution Θ3|d=3 to the Bessel like equation (5.5) can
be found by taking the perturbation 8

{
z2∂z
√
z∂z
√
z∂z − ν(ν − 1/2)(ν − 1)

}
H −

zH = 0 and passing to the limit as ν → 0 with suitable combination of the basic
solutions.)
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6.2. The stationary phase formula. Recall (see [He]) that the stationary phase
formula concerns integrals of the type

(6.10) I(λ) =

∫
eλφ(α)χ(α)dkα

over a k−dimensional manifold when |λ| → ∞. Assuming that the ‘phase’ φ(α) has
finitely many critical points α1, . . . , αn, which are Morsean, one has the following
asymptotic stationary phase formula:

(6.11) I(λ) ∼
∑
i

χ(αi)
1√

det(−D2φ(αi))
eλφ(αi)

(
2π

λ

)k/2
.

Usually, in applications, the large parameter λ is imaginary and the phase φ is a
real function; then the integral in Eq. (6.10) is called the oscillating integral.
Otherwise the name mountain pass integral is sometimes used; with such case
we deal in this paper. In the case of real x and t the integrals (6.3), (6.5)d=2,
(6.6) and (6.7) are oscillating integrals and for d > 2 we deal with mountain pass
integrals.

We want to apply formula (6.11) to the above integrals with large |y| or |z| .
However here the large parameter λ is not purely imaginary and the phase φ is not
a real function. So we shall assume that λ lies in some sector S (in the complex
plane) with vertex at ∞. Then the sum in Eq. (6.11) becomes restricted to those
critical points αi for which the function

z → exp
{
λD2φ(αi)(z, z)

}
is integrable, i.e. the eigenvalues µj of the Hessian D2φ(αi) satisfy

Re(λµj) ≤ 0.

We shall also deal with integrals of the type

(6.12) J(λ) =

∫ β1

β0

eλϕ(β)χ(β)dβ,

where the ‘phase’ function ϕ is noncritical. Assume that

(6.13) ϕ′ < 0, χ(β) = (β − β0)σ−1(D + l.o.t.),

where the function χ1(β) = D + l.o.t. is analytic near β0. In this case, for large λ,
with Reλ ≥ 0, and Reσ > 0 we have

(6.14) J(λ) ∼ D · Γ(σ) · exp {λϕ(β0)} · (−λϕ′(β0))−σ

(see [ZZ3, Lemma 3.7]). Moreover, this formula holds also when Reσ < 0 and is
not integer, but the integral in Eq. (6.12) is replaced by (1 − e−2πiσ)−1 times an
integral along a contour which surrounds the point β0 in negative direction.

The aim of this subsection is to derive initial terms of the asymptotic expansions
of the functions expressed via the above contour integrals.
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Let us consider firstly the simplest case of the oscillating integral Φ1(y)|d=2 =
1

2π

∫
exp

(
2i
√
y sinα

)
dα. The phase function φ(α) = 2i sinα has two critical points

α1 = π
2 with φ(α1) = 2i, φ′′(α1) = −2i and α2 = −π2 with φ(α2) = −2i, φ′′(α2) =

2i. Therefore we obtain the following (well known) asymptotic formula for y →∞ :

(6.15) Φ1|d=2 ∼
1

2
√
πy1/4

(
ei(2
√
y−π/4) + e−i(2

√
y−π/4)

)
.

In the right-hand side of Eq. (6.6) the second integral can be ignored, because
it decreases like y−1/2 (without any exponent). The first integral in that formula
is an oscillating integrals and standard application of Eq. (6.11) gives (for y →∞)

(6.16) (Φ2 + 2γΦ1) |d=2 ∼
√
π

2iy1/4

(
ei(2
√
y−π/4) − e−i(2

√
y−π/4)

)
.

In the case of the oscillating integral (6.3)d≥3 the phase equals

φ(Q) =
∑

ςjPj .

Its critical points are calculated using a Lagrange multiplier κ corresponding to the

restriction
∏

Pj = 1. One finds Pj = κς−j , where κd = −1. This gives d points

P (k), k = 0, . . . , d − 1, P
(k)
j = ςk−j+1/2, and to d! critical points Q(l) (when we

take into account choices of the roots Q
1/(d−1)
0 , . . . , Q

1/2
d−2. Next, one substitutes

Pj = P
(k)
j eipj and Qj = Q

(l)
j e

iqj , where pj and qi satisfy definite linear relations

(see Eqs. (6.4)). The Taylor expansion of the phase at Q(l) takes the form φ(q) =

φ(Q(l)) + 1
2

∑
a

(l)
mnqmqn + . . . and the corresponding contribution in the stationary

phase formula takes the form

(2π)
(1−d)/2

(
detA(l)

)−1/2

· e−y
1/dφ(Q(l)) · y(1−d)/2d, A(l) =

(
a(l)
mn

)
In the case d = 3 we obtain, as y →∞,

(6.17) Φ1|d=3 ∼
1

π
√

3y1/3

(
e3εy1/3

ε
+
e3ε̄y1/3

ε̄
+
e−3y1/3

−1

)
, ε = eiπ/3.

(We have not finished calculations for d > 3.)

For the integral (6.5) the phase

φ(Q) =
∑

ςj ln(1− t1/dPj)

also has d! critical points.

For d = 2 the critical points in Eq. (6.5)d=2 are Q± =
√
t ± i

√
s, s = 1 − t,

and φ(Q±eiq) = ±iS2(t) ∓ iu2q2, u = 4
√
t/s. Therefore the leading term of the

oscillatory integral corresponding to the critical point α± equals

e±ixS(t) 1

2π

∫
exp(∓ixu2q2)dq ∼ 1

2u
√
±iπx

e±ixS2(t).
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We obtain

(6.18) ϕ1|d=2 ∼
1

2
√
π

{
eixS2(t)

u
√
ix

+
e−ixS2(t)

u
√
−ix

}
.

For d = 3 the critical points are Qσ,±, σ = −1, ε, ε̄, such that

Qσ,±1 =
1

t1/3 − σ̄s1/3
, Qσ,±2 = ±

√
u+ ε̄σ̄

u+ εσ̄
, u =

(
t

s

)1/3

, s = 1− t.

Here the absolute values of Qσ,±j are different from 1, so it is rather a mountain
pass integral than an oscillating integral. We deform the initial integration contour,
the torus T0 = {Q1 = eiα, Q2 = eiβ : 0 ≤ α, β ≤ 2π}, to another contour T1

such that it passes through the critical points and near these points we can write
Q1 = Qσ,±1 eiq1 , Q2 = Qσ,±2 eiq2 (see [ZZ3] for details).

One has φ(Qσ,±) = σS3(t) and the corresponding matrix Aσ defining the qua-
dratic terms equals

−σu

(
3
4 (2− σu) i

√
3

2 σu

i
√

3
2 σu 2 + σu

)
,

with the determinant 3 (σu)
2
.

The leading part of the hypergeometric function (6.3)d=3 arising from a neigh-
borhood of the point Qσ,± for large |x| equals eσxS3(t) times

(
1

2π

)2 ∫ ∫
e−x(Aq,q)/2d2q =

1

2π
√

3
×

{(
1− t
t

)1/3
1

σx

}
.

It agrees, up to a constant, with the first term in the testing WKB solution gσtest(t;x)
given in Definition 1. We get the following formal expansion as x→∞ :

(6.19) ϕ1|d=3 ∼
1

2π
√

3

{
e−xS3(t)

−ux
+
eεxS3(t)

εux
+
eε̄xS3(t)

ε̄ux

}
.

Let us present the corresponding stationary phase expansions for the functions
Θj(z)|d=2,3. For d = 2 we have the following expansions, as z →∞,

(6.20)
Θ1|d=2 ∼ −1

2
√
π

{√
z1/2

i e−2i
√
z +

√
z1/2

−i e
2i
√
z

}
,

(Θ2 + 2γΘ1)|d=2 ∼
√
π

2i

{√
z1/2

i e−2i
√
z −

√
z1/2

−i e
2i
√
z

}
.
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In [ZZ3] it was found that the integrals (6.8) and (6.9) have the following expan-
sions:

(6.21)

Θ1|d=3 ∼
√

1/3 ·
{
z1/6e

3
2 z

1/3 − εz1/6e−
3
2 ε̄z

1/3 − ε̄z1/6e−
3
2 εz

1/3
}
,

Θ2|d=3 ∼
√

2/3π
{
z1/6e

3
2 z

1/3

+ εz1/6e−
3
2 ε̄z

1/3

+ ε̄z1/6e−
3
2 εz

1/3
}
,

Θ3|d=3 ∼ −2i
√

2π/3z1/6
{
εe−

3
2 ε̄z

1/3 − ε̄e− 3
2 εz

1/3
}

+√
6/π ln 2 · z1/6

{
e

3
2 z

1/3

+ εe−
3
2 ε̄z

1/3

+ ε̄e−
3
2 εz

1/3
}
.

Remark 5. The formulas (6.15)–(6.21) cannot be treated rigorously and the reason
for this is not the fact that the corresponding series are divergent. In fact, only
one or two leading terms are correct when arg y or arg x or arg z is fixed. This is
related with the Stokes phenomenon discussed in detail in Section 7. Also there the
correct coefficients in the expansions (6.15)–(6.21) are computed.

6.3. Applications.

6.3.1. Expansion in the principal WKB solutions. The first application is the cor-
rect WKB expansion of the analytic solution ϕ1 to our hypergeometric equation.

Proposition 2. (a) For d = 2 and 0 < t < 1, x > 0 we have

ϕ1|d=2 ∼
1

2
√
π

{
g+

princ + g−princ

}
.

(b) For d = 3 and 0 < t < 1, x > 0 we have

ϕ1|d=3 ∼
1

2π
√

3

{
gεprinc + gε̄princ − 2g−princ

}
.

Here gσprinc are the principal WKB solutions from Definition 3. Of course, these
expansions are subject to the limitation from Remark 5.

This follows from Definition 3 and the fact that the solution Φ1(y)|d=2,3 has the
same representation as in Proposition 2 with gσ replaced with Gσ. In the point (b)
the coefficient before g−princ is different than in Eq. (6.19); but by Remark 5 this
coefficient is not determined in that formula. It is calculated in Section 7.

We can formulate a result like Proposition 2 but with respect to the basic solu-
tions θj . The formulas (6.20) for d = 2 and (6.21) (for d = 3) give representation of
the solutions Θj to a Bessel type equations in the WKB bases Hσ. By Theorem 1
the same relations connect the solutions θj and hσprinc. But for us important is the
coefficient before θd in the representation of the WKB solutions hσprinc in the basis

θ. We have the following result (where Fσ are defined in Definition 4).
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Proposition 3. (a) If d = 2 and 0 < t < 1, x > 0 then we have

h+
princ = −h−princ =

−1√
π
· θ2 mod θ1.

This implies that

ϕ1 =
i

2π

{
F+ − F−

}
· θ2 mod θ1.

(b) If d = 3 and 0 < t < 1, x > 0 then we have

h−princ = 0 · θ3, hεprinc = −hε̄princ =
−i
4

√
3

2π
· θ3 mod(θ1, θ2).

This implies that

ϕ1 =
i

(2π)3/2

{
F ε̄ − F ε

}
· θ3 mod(θ1, θ2).

In other sectors the relations are different than in item (b), but always we have

something like hσprinc = const· i4
√

3
2π · θ3, where the constant is either 0 or 1 or −1

(see the next section).

6.3.2. Gaussian type integrals for d = 2. In the case d = 2 in [ZZ1] we continued
further the stationary phase expansion. We have Q = Q±eiq (as above). We put
q = A/(u

√
x±), x± = ±ix, and we expand ix∆±φ := ix(φ − φ±) in powers of

x
−1/2
± . We get

ix∆±φ = ±ix± ln(1∓ iu2
(
eiA/u

√
x± − 1

)
)∓ ix± ln

(
1∓ iu2

(
e−iA/u

√
x± − 1

))
.

The x0
±−term of this expression equals −A2 and other terms, denoted by Ω(A),

can be grouped as follows:

x±u
2

 ∑
m≥0,n≥2

cm,nu
4m

(
A2

u2x±

)n+
(
±i√x±u3A

) ∑
m≥0,n≥1

dm,nu
4m

(
A2

u2x±

)n
for some real coefficients cm,n and dm,n (which do not depend on the sign ±).

We get an integral of the form 1
2πu
√
x±

∫
e−A

2 × eΩdA, where eΩ(A) is expanded in

powers of A and integrated. By analogy with the Gaussian integrals we can assume
that

〈An〉 :=
1√
π

∫
e−A

2

AndA = (n− 1)!! ·
(

1

2

)n/2
if n is even and zero otherwise. Our computations lead to the following properties
of the basic solutions to the hypergeometric equation.
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Lemma 5. (a) We have

ϕ1|d=2 ∼
1

2
√
π
Kprinc(x−2)

(
g+

test + g−test

)
,

where Kprinc(x−2) is a formal series with real coefficients such that Kprinc(x−2) =
1 + 5

256x
−2 + . . . 6≡ 1 (compare Eq. (4.19)).

(b) We have

ϕ̂2 ∼
√
π

2i

{
D+(x−1)g+

test −D−(x−1)g−test

}
,

where ϕ̂2 is defined in Remark 1 and D±(x−1) are formal series satisfying

D+(x−1) +D−(x−1) = 2Kprinc(x−2).

First proof of formula (1.8). By Remark 1, Proposition 2 and Lemma 5 we
have

θ1(s) = −Kprinc

2
√
π

{
s∂sg

+
test + s∂sg

−
test

}
and a second solution can be taken in the form

θ̂2(s) = −s∂sϕ̂2 ∼ −
√
π

2i

{
D+s∂sg

+
test −D−s∂sg−test

}
.

Since ϕ̂2 = ϕ2+const·ϕ1, also θ̂2 = θ2+const·θ1, and hence Eq. (2.9) gives θ̂2(0) =
θ2(0) = −1.

For the WKB functions g±test we find the identity (see [ZZ1])

s∂sg
±
test(s) = xe±iπxg∓test(t) = ∓ih∓test(s), t = 1− s,

where π = S2(1). This, together with the results of the previous, yields the follow-
ing:

θ1(s) ∼ −xKprinc

2
√
π
{eiπxg−test(t) + e−iπxg+

test(t)},(6.22)

θ̂2(s) ∼ x

√
π

2i
{−D+e

iπxg−test(t) +D−e
−iπxg+

test(t)}.

It implies that the formula

ϕ1(t) = − 2Kprinc

D+ +D−

sinπx

πx
· θ̂2(s) mod θ1,

This and the equalities θ̂2(0) = −1, D+ + D− = 2Kprinc (see Lemma 5(b)) imply

the formula f2(x) = −A2(x) = sinπx/πx.

Finally, we note that Eq. (6.22) implies the equality K±princ = L±princ and hence

F± = e±ix/x (see Definition 4). Then the formula ϕ1 = − sinπx
πx · θ2 mod θ1 follows

also from Proposition 3 (but it needs the analysis from Section 7).
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7. The Stokes phenomenon

The Stokes phenomenon is related with ‘jumps’ of constants in the asymptotic
expansions of solutions of linear meromorphic differential equations near irregular
critical point. Here we define the Stokes operators as acting on the basic WKB
solutions. For precise informations about Stokes operators (in the case of a linear
equation near an irregular singularity) we refer the reader to [Was], [Zo3] and to
[ZZ2], where the Stokes phenomenon for the genuine WKB solutions of equations
with large parameter is discussed.

The Stokes phenomenon [St] is related with normalization of a linear system
ż = A(t)z in a neighborhood of an irregular singular point, say at t = 0. The
neighborhood of t = 0 is divided into sectors Sj , such that there exist changes
z = Bj(t)y holomorphic with respect to t ∈ Sj which lead to a diagonal system
ẏ = diag(d1(t), . . . , dn(t))y. But the matrix-valued functions Bj are different in
different sectors. The difference between Bj and Bj+1 is measured via so-called
Stokes matrices (see [Zo3]).

In the context of WKB solutions, e.g. for t ∈ (0, 1) and large parameter x,
usually the Stokes matrices are related with solutions near one of the endpoints of
the time interval, t = 0 or t = 1 (see [He]). One would like to define analogues
of the Stokes operators for the WKB solutions, but when the time t ∈ (0, 1) is
real and the large parameter x varies in some sectors near x = ∞, i.e. in (C,∞) .
However, a rather detailed analysis performed in [ZZ2] demonstrates that it is not
possible to do this in uniform way with respect to t. Moreover, calculations of the
Stokes operators associated with the third order hypergeometric equation (1.1)d=3

demonstrate that the Stokes operators at the two endpoints of the interval (0, 1)
are essentially different.

When studying the Stokes phenomenon in [He] and [Fed] greater attention is
focused on analytic properties of the WKB solutions with respect to the time t,
while the parameter x ≈ +∞ is usually real. The so called Stokes lines are drawn
in the complex t−plane near the ‘turning points’ points t = 0 and t = 1. In
this section we focus our attention on the parameter x, which will vary in whole
sectors near infinity, and the time t will vary in a small neighborhood of the interval
(β, 1− β) ⊂ C (like in Section 4.3).

Below we firstly calculate the Stokes operators for the Bessel type equations

(5.14)d=2,3 and (5.15)d=2,3, i.e. in the WKB bases G̃σ and H̃σ in Eqs. (5.13).
We use essentially two methods: one from the book of J. Heading [He] and using
perturbation of the Bessel type equations to equations with regular singularities
and then considering corresponding monodromy matrices. An alternative approach
is to use results of the paper [DuMi] which imply that the principal Stokes matrix
differs from the identity only at one place.

It is worth to underline the fact that the Heading’s method is sufficient only in
the case d = 2. In the case d ≥ 3 it is insufficient.
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Finally, in the second part of this section, we apply the results about the Bessel
type equations to analysis of the Stokes phenomenon for the principal WKB so-
lutions gσprinc and hσprinc the hypergeometric equation (1.1). We show that the

connection coefficient Ad(x) from Lemma 3.2 is a sum of WKB type the formal
summands Fσ, they are subject to Stokes phenomenon which is trivial in the case
d = 2 and nontrivial in the case d = 3.

7.1. Stokes operators for the Bessel type equations.

7.1.1. The case d = 2. We begin with Eq. (5.14)d=2. By a sectorial normalization

theorem the solutions G̃±(v) from Eq. (5.13)d=2 represent asymptotic series for

solutions G̃±r,l(v) which are analytic in some sectors about v =∞ (in the complex

v−plane).

There are two such sectors: Sr (right) and Sl (left) with vertex at ∞ of angle
2π − 2δ (δ > 0 and small) and with the rays arg v = 0 and arg v = π as their
bisectrices. The latter rays are called the rays of division. Then the sectors
Su = Sr ∩ Sl ∩ {Im v > 0} , and Sd = Sr ∩ Sl ∩ {Im v < 0} have angle π − 2δ.
The sectors Su and Sd are ‘transitional’ sectors; their bisectrices are called the

Stokes lines. G̃±r and G̃±l are the corresponding solutions in the sectors Sr and
Sl respectively obtained from the sectorial normalization theorem.

We note the following relations (where f ≺ h means that the function f is much
smaller than the functions h) :

(7.1) G̃+
r,l ≺ G̃

−
r,l in Su, G̃−r,l ≺ G̃

+
r,l in Sd.

The solutions G̃±r (respectively G̃±l ) are analytic in the adjacent sectors Su (up)
and Sd (down). Therefore they are expressed as linear linear combinations of the

corresponding solutions G̃±l (respectively G̃±r ). The corresponding matrices Cu and
Cd of changes between the basic solutions are called the Stokes matrices.

Each Stokes matrix is triangular with 1 on the diagonal. We have

(7.2) Cu =

(
1 c12

0 1

)
, Cd =

(
1 0
c21 1

)
.

This means that, after passing from the sector Sr to the sector Sl, the basic solutions
undergo the following changes:

G̃+
r = G̃+

l , G̃−r = G̃−l + c12G̃
+
l (in Su),(7.3)

G̃+
l = G̃+

r + c21G̃
−
l , G̃−l = G̃−r (in Sd).(7.4)

The rule is that to a given solution one can add a solution with smaller asymptotic
at infinity. We shall calculate the coefficients c12 and c21 using the method from
[He], where Stokes matrices associated with the Bessel equation were computed
(see also [Zo3]).
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We note also the following symmetry property :

(7.5) G̃+
l (eiπv) = −G̃−r (v), G̃−l (eiπv) = G̃+

r (v), v > 0.

Let G̃+
r (v) on the ray arg v = 0 (in the sector Sr) be represented by the following

combination of the basic solutions Φ̃1(v) = Φ1(v2), Φ̃2(v) = Φ2(v2) = Φ̃1 ln v2 +

Ψ̃2(v2) :

(7.6) G̃+
r (v) = K1Φ̃1(v) +K2Φ̃2(v), v > 0,

for some coefficients K1 and K2. After passing to the ray arg v = π (in Sl) and the

substitution v → −v (using Eqs. (7.5) and the logarithmic singularity of Φ̃2) we
get

(7.7) −G̃−r (v) = (K1 + 2πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Analogously, after passing to the ray arg x = 2π and using an analogue of the
relations (7.5), we get

(7.8) −G̃+
r (v)− c21G̃

−
r (v) = (K1 + 4πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Eqs. (7.6)–(7.8) imply the representation (on arg v = 0)

Φ̃1(v) =
i

2πK2
(G̃+

r + G̃−r ), Φ̃2(v) =

(
1

K2
− iK1

2πK2
2

)
G̃+
r −

iK1

2πK2
2

G̃−r ,

and that

c21 = 2.

Moreover, the asymptotic formula (6.18) implies that K2 = i/
√
π.

In the same way one proves that c12 = −2 and obtains the representation

Φ̃1(v) =
1

2
√
π

(G̃−l − G̃
+
l ), arg v = π.

Calculation of the Stokes matrices associated with the Bessel type equation
(5.15)d=2 runs practically in the same way as above. The formal WKB solutions

H̃±(w) =
√
−w±e−2w±

{
1 +

b1
w±

+
b2
w2
±
− . . .

}
, w± = ±iw.

satisfy the Bessel type equation (5.15)d=2 with another pair of solutions

(7.9) Θ̃1(w) = w − 1

2
w2 + . . . , Θ̃2(w) = Θ̃1(w) · lnw + Ξ̃3(w)

(with analytic Θ̃1 and Ξ̃3).

Now we have the same sectors Sr,l, with analytic solutions H̃±r,l, and Su,d about

w = ∞, but with domination relations different than in Eq. (7.1). Therefore the
corresponding Stokes matrices take the following form

(7.10) Du =

(
1 0
d21 1

)
, Dd =

(
1 d12

0 1

)
.
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Anyway (using also Eqs. (6.20)) we arrive to the following result, where Eq. (7.17)

is a consequence of the factor
√−w± in definition of H̃±: we have H̃±l (e2πiw) =

−H̃±l (w).

We summarize this in the following

Proposition 4. (a) We have c12 = −2 and c21 = 2 in Eqs (7.2). Moreover,

Φ̃1(v) =
1

2
√
π

(
G̃+
r + G̃−r

)
, Φ̃2 = −i

√
π · G̃+

r mod Φ̃1, arg v = 0;(7.11)

Φ̃1(v) =
1

2
√
π

(
G̃−l − G̃

+
l

)
, Φ̃2 = −i

√
π · G̃+

l mod Φ̃1, arg v = π.(7.12)

(b) We have d12 = −2 and d21 = 2 in Eqs (7.10). Moreover,

Θ̃1 =
1

2
√
π

(
H̃r + H̃−r

)
, Θ̃2 = −i

√
π · H̃+

r mod Θ̃1, argw = 0;(7.13)

Θ̃1 =
1

2
√
π

(
H̃−l − H̃

+
l

)
, Θ̃2 = i

√
π · H̃−l mod Θ̃1, argw = π.(7.14)

In particular, we get

H̃+
r (w) = −H̃−r =

(
i/
√
π
)
· Θ̃2 mod Θ̃1, argw = 0;(7.15)

H̃+
l (w) = H̃−l =

(
−i/
√
π
)
· Θ̃2 mod Θ̃1, argw = π;(7.16)

H̃+
l (w) = −H̃−l =

(
i/
√
π
)
· Θ̃2 mod Θ̃1, argw = −π.(7.17)

Above we give the representation of the function Φ̃1(v) for v on the two rays
of division. But, in fact, these formulas hold true in the whole sectors Sr,l which
contains the corresponding ray of division. The same remark applies in other
expansions.

7.1.2. The case d = 3. Eq. (5.14)d=3 has the following independent solutions

Φ̃1(v) = Φ1(v3), Φ̃2(v) = Φ̃1 ln v3 + Ψ̃2(v), Φ̃3 =
1

2
Φ1 ln2(v3) + Ψ̃2 ln v3 + Ψ̃3,

where Φ̃1, Ψ̃2 and Ψ̃3 are entire functions and depend on v3. We have also the

system G̃σj of WKB type solutions defined in the sectors Sj about v =∞ (see Eq.
(5.16) and Figure 1 below).

The rays of division Rj (or the anti-Stokes lines) are given by arg v = 0, π/3,
2π/3, π, 4π/3, 5π/3, i.e. they are the bisectrices of the sectors Sj . Then the sectors
S12 = S1 ∩ S2, S23, S34, S45, S56, S61 have angle π/3 − δ (see Figure 1); their
bisectrices are known as the Stokes lines. The corresponding Stokes matrices Cji

are the matrices of changes between the basic solutions
{
G̃σi

}
and

{
G̃σj

}
in the

sectors Si and Sj .
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Each matrix Cji, after suitable ordering of the basic solutions, becomes upper
triangular with 1’s on the diagonal. For example, in the sector S12 we have

G̃−j ≺ G̃
ε
j ≺ G̃ε̄j , j = 1, 2.

The Stokes matrix associated with the sector S12 equals

(7.18) C21 =

 1 a b
0 1 c
0 0 1

 ,
where the parameters a, b, c are to be determined.

Other Stokes matrices can be obtained from the matrix C21 using the fact that
Eq. (5.16) is invariant with respect to:

— the rotation v → ε2v (where ε = eiπ/3),

— the complex conjugation v → v̄.

Formally the rotation ε2v is reflected in the cyclic permutation of solutions,

G̃σj+2(ε2v) = G̃ε
2σ
j (v). The double rotation results in the change G̃σj+4(ε4v) =

G̃ε
4σ
j (v). The complex conjugation induces the change G̃σj (v) = G̃σ̄7−j(v̄); but here

also the orientation of the v−plane is reversed. Compare also Eqs. (4.27)–(4.28).

Figure 1. Rays of division

Therefore the Stokes matrices C43 and C65 are obtained from C21 by application
of conjugation with suitable permutation matrices. The matrix C16 is obtained
from C21 by: complex conjugation, taking the inverse and conjugation with the
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permutation (1) (23) . The matrices C32 and C54 are obtained from the matrix C16

by permutations.

In the calculation of the Stokes matrix C21 we follow the Heading method de-

scribed in the previous section for the case d = 2. We represent the function G̃−(v)

in the ray R1 = {arg v = 0} in the basis
{

Φ̃j

}
,

G̃−1 = K1Φ̃1 +K2Φ̃2 +K3Φ̃3

(with coefficients Kj), and we pass to the rays R3, R5 and R1, using actions of the
matrices C31 = C32C21, C53 = C54C43 and C15 = C16C65 and substitutions ε2v,
ε4v and ε6v in the argument. We arrive at the following relation

(7.19) b = 3 + ā+ c̄,

but the parameters a and c are not determined.

We repeat the same analysis, but starting from the ray R6 = {arg v = −π/3}
and use the matrices C26 = C21C16, C42 and C64. Again we get relation (7.19).

In order to calculate the constants a and c we use the known property (see [Gl]
or [Zo1]) that Stokes operators are limits of monodromy operators of a perturbed
equation which has regular singularities.

An obvious perturbation of Eq. (5.3) is the our initial hypergeometric equation,
i.e. (1 − yx−3)∂yy∂yy∂yG + G = 0, and the corresponding perturbation of Eq.
(5.14) is

(7.20)
(
1− (v/x)3

)
∂vv∂vv∂vG̃+ 27v2G̃ = 0.

Together with perturbation (7.20) we shall consider the following one:

(7.21)
(
1 + (v/x)3

)
∂vv∂vv∂vG̃+ 27v2G̃ = 0,

i.e. with change of the sign before (v/x)
3
.

Eq. (7.20) has three additional singular points v1 = x, v2 = ε2x, v3 = ε−2x
which tend to infinity as x→∞ and where we assume that x is real positive. The
latter singular points lie in the division rays R1, R3 and R5 and the monodromy
matrices M1, M2 and M3 (in some basis of solutions) defined by prolongation of
solutions along curves around these points (in the clockwise direction) should tend
(as x→∞) to matrices equivalent to C−1

26 , C
−1
42 and C−1

64 respectively.

On the other hand, each monodromy matrix Mj , j = 1, 2, 3, is equivalent to
some monodromy matrix M1 related with the hypergeometric equation (1.1)d=3

and corresponding to the singular point t = 1. Since the basic solutions of the latter
equation near s = 1 − t = 0 are s + . . . , s2 + . . . , and (s2 + . . .) lnx3s + α + . . .
the corresponding monodromy matrix M1 has all eigenvalues equal to 1 and its
Jordan decomposition consists of two cells; anyway, the characteristic polynomial
is P (λ) = det (M1 − λ) = (1 − λ)3. Looking at the matrix C26 in [ZZ3] one finds
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that its characteristic polynomial is
(

1− λ)(λ2 −
(

2− |c|2
)
λ+ 1

)
. It follows that

c = 0.

Equation (7.21) is related with the modified hypergeometric equation (1 +
t)∂t∂t∂g +x3g = 0, where one checks that the basic solutions near s = 1+t = 0 are
s+ . . . , s2 + . . . and

(
s2 + . . .

)
ln s+ . . . . Here also the corresponding monodromy

matrix has eigenvalues 1 and two Jordan cells. On the other hand, the monodromy
matrices related with the singular points v = −x, εx, ε̄x of equation (7.21) tend to
the matrices C−1

53 , C
−1
31 , C

−1
16 . The same arguments as above show that a = 0.

From the above we get the following result.

Proposition 5. The principal Stokes matrix associated with the WKB bases
(
G̃σ1

)
and

(
G̃σ2

)
, σ = −1, ε, ε̄, takes the form

C21 =

 1 0 3
0 1 0
0 0 1

 .
Moreover we have the following representations:

(7.22)

Φ̃1 = 1
π
√

3
(G̃ε1 + G̃ε̄1 − 2G̃−1 ),

Φ̃2 = i√
3
(G̃ε̄1 − G̃ε1) mod Φ̃1,

Φ̃3 = − 4π√
3
G̃−1 mod

(
Φ̃1, Φ̃2

)
(for v ∈ R1). Analogous representations hold in other rays of division:

(7.23)
Φ̃1 = 1

π
√

3
(G̃−j + G̃εj + G̃ε̄j), v ∈ Rj , j = 2, 4, 6,

= 1
π
√

3
(G̃−j + G̃εj + G̃ε̄j − 3G̃∗j ), v ∈ Rj , (j, ∗) = (1,−), (3, ε), (5, ε̄).

Note that in the ray R1 two dominating WKB solutions G̃ε and G̃ε̄ are of the
the same order. So the coefficients between them in Eq. (7.22) are determined
by the asymptotic of the oscillating integral (via the stationary phase formula).

The coefficients before G̃ε and G̃ε̄ in Eq. (7.22) agree with Proposition 2, but the

coefficient before G̃− is different.

From the proof of Proposition 5 it is seen that using only the method from the
Heading’s book [He] we are not able to compute all the Stokes matrices, we obtain
only one relation (7.19). On the other hand, only the knowledge of the Jordan
decomposition of the composed Stokes matrices, like C31, does not allow to obtain
relation (7.19). Therefore the both methods should be used. Probably this fact is
true in more general high order linear meromorphic ODE’s.

Of course, the relative simplicity of the principal Stokes matrix can be explained

by the fact that the domains of analyticity of the functions G̃σj are larger than the
sectors Sj (compare Section 5.2).
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As we have mentioned, the Stokes matrices associated with the WKB solutions
GσDM from Remark 3 were calculated by A. Duval and C. Mitschi [DuMi]. Their
calculations rely upon properties of the Mellin–Barnes integrals proved by C. Meijer
[Me]. Anyway, their result completely agrees with ours.8

The analysis leading to Stokes operators associated with formal WKB solutions

H̃σ(w) ∼
√
−σwe−3σw/2 (see Eq. (5.11)) which are asymptotic series for analytic

WKB solutions H̃σ
j defined in sectors Sj about w = ∞ (see Eq. (5.17)) leads to

the following result. Below the constants

L1 =
√

3/2 and L3 = (−i/4)
√

3/2π

appear in the representation

H−4 = L1Θ̃1 + L2Θ̃2 + L3Θ̃3, w ∈ R4,

and are taken from Eq. (6.21).

Proposition 6. The principal Stokes matrix associated with the WKB bases
(
H̃σ

4

)
and

(
H̃σ

5

)
, σ = −1, ε, ε̄, takes the form

C54 =

 1 0 1
0 1 0
0 0 1

 .
Moreover we have the following representation:

(7.24)

4L1Θ̃1 = 2H̃−4 − H̃ε
4 − H̃ ε̄

4,

4πiL3Θ̃2 = −H̃ε
4 + H̃ ε̄

4,

4L3Θ̃3 = 2(H̃−4 + H̃ε
4) mod Θ̃2

for w ∈ R4 and 0 < t < 1. The representations in other rays Rj (and 0 < t < 1) are

presented in [ZZ3, Prop. 5.5]. This implies the following relations mod
(

Θ̃1, Θ̃2

)
:

(7.25)

H̃−1 = 0, − H̃ε
1 = H̃ ε̄

1 = L3Θ̃3, w ∈ R1

H̃−2 = −H̃ε
2 = H̃ ε̄

2 = L3Θ̃3, w ∈ R2

H̃ε
3 = 0, H̃−3 = H̃ ε̄

3 = L3Θ̃3, w ∈ R3

H̃−4 = H̃ε
4 = H̃ ε̄

4 = L3Θ̃3, w ∈ R4

H̃ ε̄
5 = 0, H̃−5 = H̃ε

5 = L3Θ̃3, w ∈ R5

H̃−6 = H̃ε
6 = −H̃ ε̄

6 = L3Θ̃3, w ∈ R6

H̃−1 = 0, H̃ε
1 = −H̃ ε̄

1 = L3Θ̃3, w ∈ R1.

8In the sequent paper [Mit] Mitschi applied the results of [DuMi] to compute the differential

Galois groups of some confluent hypergeometric equations. Previously these groups were calcu-
lated in algebro–geometrical way (which avoids calculation of the Stokes constants) by N. Katz

[Ka1] and [Ka2]; the method of Katz was initiated in the paper [BBH].
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Note that for z > 0, i.e. w > 0, the value of Θ̃3 mod Θ̃2 agrees with Eq. (6.21),
which was obtained by calculation of corresponding mountain pass integrals.

Note also the difference between the data of the latter tables for the ray R1

(in the first and in the last row in Eq. (7.25)). It corresponds to the turning

w 7−→ e2πiw. Here Θ̃1 changes to −Θ̃1, Θ̃2 is unchanged, Θ̃3 acquires a term

proportional to Θ̃2 and H̃σ change to −H̃σ; all is OK.

7.2. Stokes operators for the hypergeometric equation. We deal with formal
WKB solutions for the hypergeometric equation as well as for the corresponding
Bessel type equations. By results of Section 5.2 the reductions to the normal (di-
agonal) form for associated with them systems are compatible. Recall that these
formal solutions are of Gevrey type and in suitable domains are represented by an-
alytic functions, but the above analytic constructions are not quite compatible. In
the other hand, the analytic equivalences with corresponding Bessel type equations
(using the matrices H0 and H1 in Section 5.3) imply compatibility of analytic and
of formal solutions.

So, in order to avoid technicalities, we limit ourselves to the formal case. This
is the way chosen in [ZZ3] for d = 3. In [ZZ1] the case d = 2 is done with complete
details.

7.2.1. The case d = 2. Let 0 < t < 1. Using Theorem 1 and Definition 3 we can

replace in Proposition 4 Φ̃j and Θ̃j with ϕj and θj and the WKB solutions G̃±j and

H̃±j with g±princ and h±princ. Therefore, for arg x = 0, we have

ϕ1 =
1

2
√
π

{
g+

princ + g−princ

}
=

1

2
√
π

{
F+(x)h+

princ + F−(x)h−princ

}
=

1

2
√
π
· i√

π

{
F+ − F−

}
· θ2 mod θ1.

For arg x = π we have

ϕ1 =
1

2
√
π

{
g−princ − g

+
princ

}
=

1

2
√
π
· −i√

π

{
F− − F+

}
· θ2 mod θ1.

Here F±(x) = 1
xe
±ixπω±(1/x), ω± = 1 +O(1/x) are defined in Definition 4 (com-

pare also Propositions 2 and 3). The above pattern repeats as arg x increases by
2π.
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We arrive at the following.

Proposition 7. The connection coefficient A2(x) from Lemma 2 equals

A2(x) =
i

2π

{
F+(x)− F−(x)

}
, x→∞,

where the functions F±(x) are single valued.

Second proof of the formula (1.8). We note that the function f2(x) =
−A2(x) vanishes at the points x = ±1,±2, . . . . Since the function sinπx/x has
simple zeroes at these points, we find that the function

f2(x)/ (sinπx/x)

is entire on C. By Proposition 7 it is bounded at infinity. Therefore it is a constant
function equal 1/π (since f(0) = 1).

7.2.2. The case d = 3. Here we follow the previous case with use of Propositions 5
and 6. For 0 < t < 1, we have

π
√

3ϕ1(t;x) = gεprinc + gε̄princ − 2g−princ, x ∈ R1,

gεprinc + gε̄princ + g−princ, x ∈ R2,

g−princ + gε̄princ − 2gεprinc, x ∈ R3,

gεprinc + gε̄princ + g−princ, x ∈ R4,

g−princ + gεprinc − 2gε̄princ, x ∈ R5,

gεprinc + gε̄princ + g−princ, x ∈ R6,

where gσprinc = Fσhσprinc.

We have also the following relation modulo (θ1, θ2) :

h−princ = 0, hε̄princ = −hεprinc = L3θ3, x ∈ R1,

and other relations like in Eqs. (7.25), where L3 = − i
8

√
3/2π.

This implies the following representations of the generating function f3(x) =
−2A3(x) :

(7.26)

−i (2π)
3/2

f3(x) = F ε̄ − F ε, x ∈ R1,
F ε̄ − F ε − F−, x ∈ R2,
F− + F ε̄, x ∈ R3,
F ε + F ε̄ + F−, x ∈ R4,
F− + F ε, x ∈ R5,
F− + F ε − F ε̄, x ∈ R6,

where Fσ = ±1
x3/2 e

2πσx/
√

3ωσ(x−1/2) are the WKB type functions from Definition
4.

Since Fσ(x) = Fσ±(x1/2) depend on x1/2 (see Eq. 5.22)), table (7.26) should be
continued in order to turn twice around x = ∞. The corresponding formulas are
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related with compositions of the changes from Eqs. (7.26) with the monodromy of
the functions Fσ± :

(7.27) M∞ : Fσ± 7−→ −Fσ∓.

We also see that the functions Fσ± are subject to Stokes phenomenon with the
principal Stokes matrix relating solutions at the rays R1 and R2 of the form

(7.28) C21 =

 1 p q
0 1 0
0 0 1

 , p− q = 1.

We can state the fundamental result of the whole paper.

Theorem 2. The collection
{
Fσ±
}

of WKB type functions is subject to the mon-
odromy (7.27) around x = ∞ and the Stokes phenomenon with the constant prin-
cipal matrix (7.28) (other Stokes matrices are obtained from this by applying the
conjugation and rotation symmetries). The generating function f3(x), which is
entire function of x, in each sector Sj near infinity is a linear combination with
constant coefficients of the functions Fσ±.

Moreover, the functions Fσ± are WKB solutions to a sixth order differential equa-
tion near x =∞ of the form

(7.29) ∂6
xf + a1∂

5
xf + a2∂

4
xf + a3∂

3
xf + a4∂

2
xf + a1∂xf + a6f = 0

with analytic coefficients

(7.30) aj(x) =
∑
k≥0

aj,kx
−j

such that

(7.31) a3,0 = 2S3(1)3, a6,0 = S3(1)6, a1,1 = a4,1, a2,1 = a5,1, a3,1 = a6,1.

Also the generating function f3(x) satisfies Eq. (7.29).

Proof. The first statement of the theorem (about the monodromy and the Stokes
matrices) is already proved. From this it follows that the space generated by the
functions Fσ±(x) near x = ∞ (or their analytic representatives) is invariant with
respect to monodromy around x =∞ and with respect to passing from one sector
to an adjacent sector. Since the monodromy matrix M∞ and the Stokes matrices
have constant coefficients, also the spaces generated by the successive derivatives
∂ixF

σ
± are invariant. As in other similar situations (see [Zo3]), we arrive to the

determinant equation

det


f ∂xf . . . ∂6

xf
F1 ∂xF1 . . . ∂6F1

. . . . . . . . . . . .
F6 ∂xF6 . . . ∂6F6

 = 0
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which is satisfied by the functions Fj (where we have ordered the functions Fσ± =
Fj). This equation is equivalent to Eq. (7.29), where the coefficients aj(x) are
ratios of some minors of sixth dimension and are holomorphic and single valued
functions of x.

The form (7.30) of the coefficients aj(x) and the relations (7.31) follow from

the fact that the WKB solutions have the form ∼ eσxS3(1)x−3/2. When we as-
sume a solution f ∼ eκxxγ , then we should get the ‘Hamilton–Jacobi equation’∑
j aj,0κ

6−j =
(
κ3 + S3(1)

)2
= 0 and the value γ = −3/2 implies the equation

6 · (σS3(1))
5 ·
(
−3

2

)
+ a3,0 · 3 · (σS3(1))

2 ·
(
−3

2

)
+
∑
j

aj,1 · (σS3(1))
j

= 0,

which is satisfied for any σ = −1, ε, ε̄.

Remark 6. It is highly interesting whether Eq. (7.29) can be prolonged to the
whole x−plane with the other singularity at x = 0. Indeed, the function f3(x) is its
solution and has very regular behavior at x = 0. So, maybe Eq. (7.29) has regular
singularity at x = 0.

But then each its coefficient aj(x) should be rational with pole at x = 0 of order
≤ j. Moreover, since f3 depends on x3, our equation should be of the form

(7.32)
f (V I) + c1x

−1f (V ) + c2x
−2f (IV ) +

(
c3 + c4x

−3
)
f (III)

+
(
c5x
−1 + c6x

−4
)
f (II) +

(
c7x
−2 + c8x

−5
)
f (I)

+
(
c9 + c10x

−3 + c11x
6
)
f = 0.

Then we get the following recurrence for the coefficients in f3 =
∑
bkx

3k :

{c11 + 3kc8 + 3k(3k − 1)c6 + 3k(3k − 1)(3k − 2)c4 + 3k . . . (3k − 3)c2
+3k . . . (3k − 4)c1 + 3k . . . (3k − 5)}bk+

{c10 + (3k − 3)c7 + (3k − 3)(3k − 4)c5 + (3k − 3) . . . (3k − 5)c3}bk−1

+c9bk−2 = 0.

In a particular, for k = 2 we get an equation relating b0 = 1, b1 = −ζ(3) and
b2 = ζ(3, 3) = 1

2

(
ζ(3)2 − ζ(6)

)
(where ζ(6) = π6/945). Since the coefficients cj

are potentially calculable, we could arrive at a quadratic equation for ζ(3) with

coefficients which most probably belong to the field Q(π,
√

3).

Recall that R. Apéry [Ap] was the first who proved the irrationality of ζ(3). If
our speculations turned out correct it would be quite spectacular achievement.

Another question is about the values of the constants p, q in the principal Stokes
matrix in Eq. (7.28). Probably p = 0 and q = −1.
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pergéométriques confluentes generalizes, Pacific J. Math. 138 (1989), 25–56.

[Fed] M. B. Fedoryuk, “Asymptotic analysis. Linear ordinary differential equations”, Springer–
Verlag, Berlin, 1993 [Russian: “Asymptotic methods for linear ordinary differential equa-

tions”, Nauka, Moscow, 1983].

[Gl] A. A. Glyutsuk, Stokes operators via limit monodromy of generic perturbation, J. Dynam.
Control Syst. 5 (1999), 101–135.

[GM] A. Gray and G. B. Mathews, “A treatise on Bessel functions and their applications to

physics”, McMillan, London, 1931.
[He] J. M. A. Heading, “An introduction to phase–integral methods”, J. Wiley & Sons, New

York, 1977.
[Hof] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477–495.
[Hut] M. Huttner, Riemann P−scheme, monodromy and diophantine approximations, Indaga-

tiones Math. 23 (2012), 522–546.
[Ka1] N. M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87

(1987), 13–61.

[Ka2] N. M. Katz, “Exponential sums and differential equations”, Annals of Math. Studies, v.
124, Princeton University Press, Princeton, 1990.

[KoZa] M. Kontsevich and D. Zagier, Periods, in: “Mathematics unlimited – 2001 and beyond”,

Springer–Verlag, Berlin, 2001, pp. 771–808.



MZV AND WKB 201

[Kr] H. A. Kramers, Wellenmechanik und halbzählige Quantisierung, Zeit. Physik 39 (1926),

828–840.

[Li] Z.-H. Li, Sum of multiple zeta values of fixed weight, depth and i−height, Math. Zeitschrift
258 (2008), 133-142.

[LYau] B. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling,
Commun. Math. Phys. 176 (1996), 163–291.

[Me] C. S. Meijer, On the G–functions, Indag. Mathem. 8 (1946), I: 124–134; II: 213–225; III:

312–324; IV: 391–400; V: 468–475; VI: 595–602; VII: 661–670; VIII: 713–723.
[MPH] H. N. Minh, M. Petitot and J. van der Hoeven, Shuffle algebra and polylogarithms, in:

“Formal Series and Algebraic Combinatorics, Toronto 98”, Discrete Math. 225 (2000),

217–230.
[Mit] C. Mitschi, Differential Galois groups of confluent generalized hypergeometric equations:

an approach using Stokes multipliers, Pacific J. Math. 176 (1996), 365–405.

[OhZa] Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth and weight, Indag.
Mathem., N. S. 12 (2001), 483–487.

[vPo] A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of ζ(3),
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