
Analytic and Algebraic Geometry
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NECESSARY CONDITIONS FOR IRREDUCIBILITY

OF ALGEBROID PLANE CURVES

SZYMON BRZOSTOWSKI

Abstract. Let K be an algebraically closed field of characteristic 0 and let
f ∈ K [[X]] [Y ] be monic. Using the properties of approximate roots given in

[J. Algebra 343 (2011), pp. 143–159] we propose some necessary conditions
for irreducibility of f in K [[X]] [Y ]. The result is expressed only in terms of

intersection multiplicities of f with its approximate roots.

1. Introduction

We recall that for a monic polynomial f ∈ R[Y ] of degree k, where R is a com-
mutative ring with unity, and for a positive integer l|k satisfying gcd(l, charR) = 1,
there exists a unique monic polynomial g ∈ R[Y ] with the property

degY (f − gl) < k − k

l
.

The polynomial g is called an approximate l-th root of f and is denoted by l
√
f (cf.

[Abh77, Definition (4.3)]).

Now, let K be an algebraically closed field of characteristic 0, K[[X]] – the ring
of power series in one variable X with coefficients in K and K ((X)) – its field of
fractions. Let f ∈ K ((X)) [Y ] be a monic and irreducible polynomial. In [Brz11] we
proved an extension of the results of Abhyankar and Moh concerning approximate
roots of f (see [AM73]) to the case of so-called ‘non-characteristic’ approximate
roots of f . The necessary excerpt from [Brz11, Theorem 5] is given in Theorem
1. In the present work, we use this theorem and the properties of characteristic
sequences to give some necessary conditions for the irreducibility of f ∈ K[[X]][Y ]
when charK = 0 (one can think K = C). These conditions are effective in the case

2010 Mathematics Subject Classification. Primary 12E05, Secondary 12E10, 14C17.
Key words and phrases. Approximate root, irreducibility condition, characteristic sequence,

intersection multiplicity.

33

http://dx.doi.org/10.18778/7969-017-6.03

http://dx.doi.org/10.18778/7969-017-6.03


34 SZYMON BRZOSTOWSKI

of f ∈ K[X,Y ]. Namely, Theorem 4 below can be easily turned into a test algorithm
for reducibility, main point of which is the process of division with remainder (it
serves to compute the intersection multiplicity (cf. [GP13]) and approximate roots
(cf. [Brz11, Remark 1])).

Let us remark that the problem of testing irreducibility has been fully solved
by Abhyankar in [Abh89], but his criterion is more technical than our numeric
conditions as it involves analyzing the form of G-adic expansions of polynomials.
From this criterion one can easily deduce necessary conditions for irreducibility
([Abh90, p. 183], presented in Theorem 2 below) similar in nature to ours (Theorem
4). We show by example (Example 2) that in general our necessary conditions are
stronger than those in Theorem 2.

For an interesting combinatorial criterion of irreducibility see the recent work
[GG10].

2. Characteristic Sequences (cf. [Abh77, § 6])

Let K be an algebraically closed field (for simplicity – of characteristic 0) and
let f ∈ K ((X)) [Y ] be a monic and irreducible polynomial. By Newton Theorem
([Abh77, Theorem (5.19)]), f can be written in the form

(2.1) f(tk, Y ) =
∏

ε∈Uk(K)

(Y − y (εt)) ,

where Uk (K) := {ε ∈ K : εk = 1} and y (t) =
∑
j∈Z

yjt
j ∈ K ((t)). We recall that

the support Suppt y(t) of y(t) is the set of those exponents of the powers of t that
occur with a non-zero coefficient in the Laurent expansion of y(t). Note also that
from the irreducibility of f it follows that gcd({k} ∪ Suppt y(t)) = 1.

The basic characteristic sequences of f . To begin with, we put m0 := k,
d1 := k and m1 := ord t y(t). If, now, y(t) = 0 then putting h := 0 we end
the construction. In the opposite case, let d2 := gcd(m0,m1). Inductively, if
m0, . . . ,mi and d1, . . . , di+1 are already defined for some i > 1, put

mi+1 := inf{j ∈ Suppt y(t) : j 6≡ 0(mod di+1)}.

If, now, mi+1 < +∞, we also define

di+2 := gcd(m0, . . . ,mi+1),

whereas in the case mi+1 = +∞ we put h := i and finish the inductive definition.

Since in the above construction there is always 0 < dj+1 < dj for j > 2, the
process ends after finitely many steps. Thus we end up with two sequences:

m := (m0,m1, . . . ,mh+1)

and

d := (d1, . . . , dh+1).
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We call them, respectively: the characteristic of f and the sequence of character-
istic divisors of f .

Using the sequences m and d we also define the following derived character-
istic sequence of f :

r = (r0, . . . , rh+1),

where r0 := m0, ri := 1
di

(m1 d1 +
∑

26j6i

(mj −mj−1) dj) for 1 6 i 6 h, and

rh+1 := +∞.

Note that the characteristic sequences defined above do not depend on the choice
of a particular y(t) satisfying (2.1).

Immediately from the definitions we get:

Property 1. The sequences m, d, r are integer-valued (or +∞). What is more,
1. h > 1 unless f = Y ,
2. m1 < m2 < . . . < mh+1 = +∞,
3. di+1 = gcd(m0, . . . ,mi) = gcd(di,mi) = gcd(di, ri) = gcd(r0, . . . , ri) for
1 6 i 6 h,
4. 1 = dh+1|dh| . . . |d1 = k and dh+1 < dh < . . . < d2 6 d1,
5. if M ∈ Z ∪ {+∞} and mi−1 < M 6 mi for some i ∈ {2, . . . , h+ 1} (or only
M 6 mi if i = 1), then

gcd({k} ∪ (Suppt y(t) ∩ (−∞,M))) = gcd(m0, . . . ,mi−1) = di,

6. ri di = ri−1 di−1 + (mi −mi−1) di for 2 6 i 6 h,
7. r1 d1 < r2 d2 < . . . < rh+1 dh+1 = +∞.

3. The Preliminary Result

We start with the following (here m, d, r are the characteristic sequences of f
with h+ 1 equal to the length of the divisor sequence d).

Theorem 1. Let K be an algebraically closed field, charK = 0, let f ∈ K ((X)) [Y ]
be of the form (2.1) and let l be a positive divisor of k. Define i := max{1 6 j 6
h+ 1 : l|dj}. Then

(3.1) ord t(
l
√
f(tk, y (t))) = ri

di
l

.

Proof. The case l 6= di is the non-characteristic case stated in [Brz11, Theorem 5,
item 5]; if l = di and l 6= k then 2 6 i, and this is the characteristic case proved in
[Abh77, Theorem (8.2)].

It remains to prove the case of l = k. Now, if k = 1 then l
√
f = f , i = h+ 1 and

rh+1 = ∞, so (3.1) is valid by the very definitions (cf. Section 2). Hence, in the
following we may assume that k > 2. Property 1 implies that in this case

(3.2) i ∈ {1, 2} and d1, . . . , di = k;
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also h > i since k > 2. Let f(tk, Y ) = Y k +v(tk)Y k−1 + ... . From Viète’s formulas
it follows that

v(tk) = −
∑

ε∈Uk(K)

y(εt) = −
∑

ε∈Uk(K)

(
∑
j<mi

(yjε
jtj)+ymiε

mitmi)+ terms of order > mi.

By the definitions of i and the characteristic sequences of f , we have di+1 =
gcd(di,mi) < di = k and also gcd({k} ∪ (Suppt y(t) ∩ (−∞,mi))) = di = k (by
Property 1). Consequently, for a k-th primitive root of unity ε0 ∈ Uk (K),{

εj0 = 1, if j < mi

εj0 6= 1, if j = mi

and so ∑
ε∈Uk(K)

εj =

{
k, if j < mi

0, if j = mi
.

It follows that

v(tk) = −k ·
∑
j<mi

yj t
j + terms of order > mi.

Now, by the definition of an approximate root, one sees easily that l
√
f = k

√
f =

Y + v(t)
k . Thus we have

l
√
f(tk, y (t)) = y(t) +

v(tk)

k
= ymi

tmi + terms of order > mi,

and since ymi
6= 0,

ord t(
l
√
f(tk, y (t))) = mi.

It remains to see that (according to (3.2))

mi =

{
r1, if i = 1
m1d1+(m2−m1)d2

d2
= r2, if i = 2

}
= ri

di
l

.

�

4. Necessary Conditions for Irreducibility

Throughout this section K denotes an algebraically closed field of characteristic
0.

Notation 1. For monic polynomials f, g ∈ K[[X]][Y ] we write I(f, g) to denote
the intersection multiplicity of f and g at 0 = (0, 0), which is, by definition, equal
to the dimension of the K-vector space K[[X,Y ]]/(f, g) (see e.g. [P lo13, Section 3]).

We recall that a monic f ∈ K[[X]][Y ] with f(0) = 0 is called Y -distinguished if
f = Y k + a1(X)Y k−1 + . . .+ ak(X) and a1(0) = . . . = ak(0) = 0.

The simplest test for reducibility is the following well-known

Property 2. If a monic f ∈ K[[X]][Y ], f(0) = 0, is not distinguished, then f is
reducible in K[[X]][Y ].
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Proof. This can be deduced from Hensel’s Lemma. An alternative proof is the
following. Suppose that f is irreducible. It is clear that f is also irreducible in
K ((X)) [Y ]. By Newton Theorem we can assume that f is of the form (2.1). Since
f ∈ K[[X]][Y ] we have y(t) ∈ K[[t]] and since: f(0) = 0, f(tk, 0) = ±

∏
ε∈Uk(K)

y (εt)

— we have y(0) = 0. This means that f is distinguished. �

The above property implies that the only interesting case to deal with is that
of a distinguished polynomial. Hence in the following we will consider only such
polynomials. The starting point for our further considerations is:

Theorem 2 (Abhyankar’s Necessary Conditions for Irreducibility [Abh90,
p. 183]). Let f ∈ K[[X]][Y ] be Y -distinguished of degree k > 2. Put r′0 := d′1 := k,

r′1 := I(f, Y ), d′2 := gcd(d′1, r
′
1) and then r′e := I(f,

de
√
f), d′e+1 := gcd(d′e, r

′
e),

for e = 2, . . . , h′ + 1, where the number h′ > 1 is defined in such a way that
d′h′ > d′h′+1 = d′h′+2 and where (by convention) every integer divides ∞. If either

(A1) d′h′+1 6= 1

or

(A2) the sequence (r′1 d
′
1, . . . , r

′
h′+1 d

′
h′+1) is not strictly increasing,

then the polynomial f is reducible in K[[X]][Y ].

Proof. If f is irreducible, one can use the Abhyankar-Moh result on characteristic
approximate roots (cf. Theorem 1) and Property 1 item 3 to see that in such a
case none of the above conditions hold. Indeed, it is enough to note that the
sequences (d′1, . . . , d

′
h′+1), (r′0, . . . , r

′
h′+1) are in fact the characteristic sequences d,

r (respectively) defined in section 2. �

Theorem 1 of section 3 can be restated as follows.

Theorem 3. Let f ∈ K[[X]][Y ] be Y -distinguished of degree k. Let (l1, . . . , la) be
the strictly decreasing sequence of all the positive divisors of the number k. Define
∆ := {δj : j = 0, . . . , a} where

δj := I(f,
lj
√
f) · lj (j = 1, . . . , a)

and

δ0 := I(f, Y ) · k.

If f is irreducible in K[[X]][Y ] and (m, d, r) denote the characteristic sequences of
f with h+ 1 equal to the length of the divisor sequence d, then

∆ = {re · de : e = 1, . . . , h+ 1}.

Proof. By the same argument as in the proof of Property 2, we can assume that f
is of the form (2.1), where y(t) ∈ K[[t]] and y(0) = 0. Hence (tk, y(t)) is a normal-
ization of the algebroid curve f = 0. By the well-known property of intersection
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multiplicity, for any g ∈ K[[X]][Y ] we have (cf. [Cam80, Chapter 2.3] or [P lo13])

I(f, g) = ord t g(tk, y(t)).

Thus, δ0 = I(f, Y ) · k = ord t y(t) · k = m1k = r1d1. Moreover, from Theorem 1
and the definition of the derived sequence r it follows that

δj = I(f,
lj
√
f) · lj = ord t

lj
√
f(tk, y(t)) · lj ∈ {re · de : e = 1, . . . , h+ 1},

for j = 1, . . . , a. In particular, if lj = de < k we have δj = rede, for e = 2, . . . , h+1;
if lj = d2 = k, we still have δj = r2d2. Consequently, ∆ = {re · de : e = 1, . . . , h+
1}. �

Now we can strengthen Abhyankar’s criterion.

Theorem 4. Let f ∈ K[[X]][Y ] be Y -distinguished of degree k > 2. Define the
sequences d′, r′ as in Theorem 2 and the set ∆ as in Theorem 3. If any of the
conditions (A1), (A2),

(B1) ∆ 6= {r′e d′e : 1 6 e 6 h′ + 1}
or

(B2) there exists j ∈ {1, . . . , a} such that for i := max{1 6 e 6 h′ + 1 : lj |d′e}
it is

δj 6= r′i d
′
i

holds, then f is reducible in K[[X]][Y ].

Proof. As in the proof of Theorem 2, if f is irreducible then the sequences (d′1, . . . ,
d′h′+1), (r′0, . . . , r

′
h′+1) are in fact the characteristic sequences d and r of f . Hence

the condition (B1) is fulfilled by Theorem 3. As for condition (B2), putting i(lj) :=
max{1 6 e 6 h′ + 1 : lj |d′e} for j = 1, . . . , a, thanks to Theorem 1 we get

δj = I(f,
lj
√
f) · lj = r′i(lj)

d′i(lj)

lj
· lj = r′i(lj)d

′
i(lj)

, for j = 1, . . . , a.

This finishes the proof. �

We illustrate Theorem 4 with some examples.

Example 1. Take Kuo’s example considered in [Abh89]:

f := (Y 2 −X3)2 −X7.

We easily compute 4
√
f = Y , 2

√
f = (Y 2 − X3) and, naturally, 1

√
f = f . Hence

(r′1d
′
1, . . . , r

′
h′+1d

′
h′+1) = (6 · 4, 14 · 2). By the condition (A1) of Theorem 2 we

deduce that f is reducible. Now we change f a little:

f := (Y 2 −X3)2 − 4X5Y −X7.

The approximate roots are as before but now (r′1d
′
1, . . . , r

′
h′+1d

′
h′+1) = (6 · 4, 13 ·

2,∞ · 1). Moreover, (δj)
3
j=0 = (24, 24, 26,∞). This easily implies that none of the
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conditions (A1)–(B2) of Theorem 4 is fulfilled and we may suspect (which is indeed
the case) that f is irreducible.

The next example shows that the conditions (B1)–(B2) of Theorem 4 are some-
times stronger than Abhyankar’s conditions (A1)–(A2).

Example 2. Consider f ∈ C[[X]][Y ] of the form

f :=(Y 2 −X)6 − 2X3Y (Y 2 −X)3 − 24X4Y (Y 2 −X)2

+ (−32X5Y +X6)(Y 2 −X) + 64X8Y.

One easily checks that

2
√
f = (Y 2 −X)3 −X3Y

3
√
f = (Y 2 −X)2

4
√
f = Y 3 − 3

2
XY

6
√
f = Y 2 −X

12
√
f = Y

and then δ0 = δ1 = I(f, Y ) · 12 = 6 · 12 = 72, δ2 = I(f, 6
√
f) · 6 = 17 · 6 = 102,

δ3 = I(f, 4
√
f) ·4 = 18 ·4 = 72, δ4 = I(f, 3

√
f) ·3 = 34 ·3 = 102, δ5 = I(f, 2

√
f) ·2 =

40 · 2 = 80, δ6 = I(f, 1
√
f) =∞. Hence ∆ = {72, 80, 102,∞}.

On the other hand, performing the test of Theorem 2, we have (r′e d
′
e)e=1,...,h′+1 =

(6 ·12, 17 ·6,∞·1) = (72, 102,∞) which easily shows that the conditions (A1)–(A2)
are not fulfilled. Hence in this case one cannot decide reducibility of f using the
criterion of Theorem 2. But since ∆ % {r′e d′e : e = 1, . . . , h′ + 1}, the condition
(B1) of Theorem 4 is fulfilled and we may conclude that f is reducible.

Remark. Abhyankar’s criterion (Theorem 2) is valid over any algebraically closed
field K of characteristic charK =: p as long as k 6≡ 0 (mod p). Theorem 4, however,
requires even more assumptions in such generality. Namely, in the notations of
Theorem 4, for every positive divisor l of the number k one has to assume that( d′i+1

l −1
u

)
· 1 6= 0 in K, where i := max{1 6 e 6 h′ + 1 : l|d′e} and u := max{0 6

e 6
d′
i+1

l :
( d′i+1

l
e

)
· 1 6= 0 in K}. This follows from Theorem 11 in [Brz08] which

generalizes Theorem 5 of [Brz11], the main ingredient for the results of the present
paper.
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