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Abstract

We investigate monadic fragments of Intuitionistic Control Logic (ICL), which is
obtained from Intuitionistic Propositional Logic (IPL) by extending language of
IPL by a constant distinct from intuitionistic constants. In particular we present
the complete description of purely negational fragment and show that most of
monadic fragments are finite.
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1. Introduction

The interplay between classical and intuitionistic logic has been investi-
gated for many years now. In this area the translations of Godel, Kol-
mogorov and others, which embed classical propositional logic into intu-
itionistic logic, or the Glivenko Theorem are the best known examples. Still
the combination of these two systems is a relatively new notion and yet to
be fully discovered. Some attempts to extend intuitionistic logic with clas-
sical connectives, in particular with classical negation, were undertaken (cf.
Nelson, Rasiowa, Sendlewski and others). Another important attempt was
Girard’s Linear Logic. This logic contains two significant properties: a fully
involutive negation, which is characteristic for classical logic, and a strong
constructive interpretation, which is a core of intuitionistic logic. Never-
theless, linear logic has its limitations and main drawbacks are complicated
language and undecidability of the full system.
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This was the inspiration for Ch. Liang and D. Miller who in [3], [4]
and [5] presented several systems that to some extent can be treated as a
combination of classical and intuitionistic logic. In this paper we present
Intuitionistic Control Logic (ICL) which was introduced in [3]. The lan-
guage of ICL results from espanding that of Intuitionistic Propositional
Logic (IPL) by additional new constant for falsum L, distinct from intu-
itionistic falsum 0. In [3] Liang and Miller defined sequent calculus LJC for
ICL. This proof system is isomorphic to the usual natural deduction sys-
tem for intuitionistic logic except for two rules which concern the additional
constant 1. The authors defined topological and Kripke style semantics for
ICL and proved soundness and completeness of LJC with respect to these
semantics. In this paper, however, we shall focus on the Kripke model
approach.

Having two different falsum constant entails having two kinds of nega-
tion: intuitionistic ~A = A — 0 and “classical” =A = A — 1. The
second negation plays crucial role in emulating within ICL control opera-
tors such as C or call/cc (function existing in many functional programming
langueages, for example Scheme), which was the main impetus for creating
this logic. In this paper we investigate monadic fragments of ICL, that is,
the language restricted to one variable only. Moreover, we will investigate
fragments resulting in restriction of connectives, for example we deal with
purely negational monadic fragment i.e., the fragment in the laguage of

(p,"’, _')'

2. Preliminaria

We start with recalling some facts about ICL from [3]. Formulae of ICL are
build from atomic formulae (propositional variables), intuitionistic connec-
tives V, A, — and of three constants 0,1, 1. Constants denoted by 0 and 1
corresponds respectively to intuitionistic falsum and verum, thus if a for-
mula of ICL does not contain the additional constant L, then it is an in-
tuitionistic formula. We use the expression A <> B as a shorthand for
(A— B)AN(B — A).

A Kripke model for ICL will be called an r-model and is defined as
follows.

DEFINITION 2.1. A Kripke r-model is a quadruple (W, r, <,IF) where W
is a finite, non-empty set, < is a reflexive and transitive relation on the set
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W and IF is a binary relation between elements of W and atomic formulae
called forcing. Elements of the set W are called worlds or nodes. The el-
ement r € W is the root of the model. It is the least element of the set
W (r < u for every world uw € W). As usual, the pair (W, <) is called
a Kripke frame.

Similarly as in Kripke models for intuitionistic logic, the forcing relation
IF is monotone, that is if v < v then u IF p implies v IF p. The IF relation is
extended to all formulae in the following way. Let u,v,i € W.

e ul-1and ulf0

o r Ll

e jlFl foralli>r

e ulFAVBiffulFkAorul-B

e ulFAANBiff ulk A and ul- B

o ulFA— Biff forall v >wuif vIF A then v IF B.

Satisfiability of a formula A in an r-model M (in symbols M = A) and
validity of a formula A (in symbols |= A) are defined for the class of all
r-models as usual.

We consider only models based on finite, rooted frames or even finite
trees. It is known that Kripke models for intuitionistic propositional logic
can be assumed to have this restriction. Forcing of the additional constant
L distinguishes between the root of an r-model and the rest of worlds.
Worlds properly above the root, that is worlds in which L is forced, will
be called imaginary. We use symbols u, v, w to represent arbitrary worlds
in W and the symbol ¢ to represent imaginary worlds.

Having two different constants for falsum, enables to define two differ-
ent negations

Intuitionistic negation: ~p = p—0

Classical negation: -p=p—L

It is well-known that the set of theorems of intuitionistic propositional
logic is the proper subset of the set of classical theorems. For example
it does not contain neither the law of excluded middle nor the double
negation principle. Similarly in ICL none of the two formulae ~p V p nor
~n~p — p are theorems. However, the law of excluded middle with respect
to the second negation, that is =p V p, is an ICL tautology, hence the term
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classical in the name of this negation. Nevertheless, being defined using
intuitionistic implication, this negation is not involutive as ——p does not
imply p. Therefore we prefer to call it L-negation, instead of “classical”
negation.

3. Negational fragment

The impetus for ICL came from the search of a logic that would enable
to type programming language control operators without collapsing intu-
itionistic implication into classical one. Within ICL we can emulate control
operator C using formula ~—A4 — A and control operator call/cc using a
version of Peirce’s formula namely ((4 —L1) — A) — A. In both formulae
the L-negation plays an important role. From this, and the fact that the
combination of the two negations is not involutive, arises the question of
the actual number of nonequivalent negational formulae in ICL. This was
investigated in details in [2], in this section we quote the most important
results.

We consider the fragment in the language of ~, = and p only and look
into properties of these two negations and the interplay between them.
To stress that the only connectives are negations, we call this fragment
monadic purely negational fragment. We treat both negations as primitive
connectives, not defined by means of constants and implication. Every
r-model defined as in Definition 2.1 is a model for this fragment of ICL as
well but we define interpretation of negations independently.

DEFINITION 3.1. A Kripke model for the negational fragment of ICL is
atuple M = (W, r, <,IFF) where W, r and < are defined as in Definition 2.1
and the forcing relation I is restricted to the variable p. Additionally we
define the interpretation of negations:

o ulk~Aiff wlf Aforallw > u,

o ulF-Aiff wlf Aorw> r forallw > u.

It is according to the definition of forcing for constants 0, L and intu-
itionistic implication in the case of full language. Forcing of intuitionistic
negation is standard. For 1-negation we have

wlk —p iff wlf porwl-L, forallw > w.

The condition w IFL means that w is an imaginary world.
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Directly from the above definition of forcing of negations we get four
basic properties.

Fact 3.2. For every Kripke model M = (W, v, <,IF) and every negational
formula A we have:

(1) v IF-Aiff v If A,

(2) rlf-Aiff v I-A,

(3) ulf =Aiff w=r and ulF A, forarbitrary v € W,
(4) i Ik =Aforall i > r.

In ICL the distinction between the root of the r-model and other worlds
is expressed by the forcing of |, whereas in the monadic purely negational
fragment the root of the model is the only world in which |-negation of
a formula can be refuted. It follows that 1l-negation of a formula is forced
in every imaginary world.

We consider monadic negational formulae, i.e., we deal with formulae
of the form p,—p, ~—p, ~—~p, ~~~=p etc. Arbitrary sequence of both
negations of length & € {0,1,2,...} = N will be denoted Nj. For iteration
of n negations of given kind we write either ~™ or =". By the length
of an negational formula Nip we define the number £k of negations of both
kinds. Formulae of the form Ny;p and Nojy1p will be called even negational
formula and odd negational formula, respectively. We treat the variable p
as a negational formula of the length 0.

Let N be the set of all negational formulae. We consider negational
formulae up to the equivalence relation defined on the set AV in the standard
way:

A=Biff A+ B.

Later on we shall use a relation < defined on the quotient set A'/= by
[Al- < [Bl= iffl = A B,

where [A]= is the equivalence class of a formula A.

It is easy to see that no negational formula with odd number of nega-
tions can be equivalent to a formula with even number of negations. There-
fore all properties concerning equivalences between such formulae are di-
vided into two cases: for odd and even number of negations. The property
of reduction of negations with respect to sequences of one type of negation
is straightforward and it follows from the fact that both ~~~p = ~p and
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ProproSITION 3.3. For any k € N we have:

(1) ~EFp = o,

(2) ~@Hp = o,

(3) = +2p = ——p,

(4) —CFp = —p.

We already pointed out a formula ~—A — A which enables to emulate

the control operator C. It turns out that the negational formula ~—p is a
representative of a wide class of equivalent negational formulae of the form

~=Nggp. Similar role for the class of odd negational formulae plays either
the formula ~——p or the equivalent formula ~—~p.

PROPOSITION 3.4. For any k € N we have:

(1) N—\Ngkp = ~7p,
(2) N_|N2k+1p = ~mmp.

Proposition 3.3 and Proposition 3.4 show that in many cases we can
reduce a negational formula of a greater length to a formula of length less
than 4.

It is worth noting that formulae ~—p and ~——p imply every formu-
lae with even and odd number of negations, accordingly. In other words,
these formulae are minimal elements with respect to the relation < in sub-
sets of even negational formulae and odd negational formulae, respectively.
Proposition 3.5 presents also maximal elements of this kind.

PROPOSITION 3.5. For any k € N following implications are valid:
(1) ~=p — Nakp,
(2) Nogp — —~mep,
(3) ~==p = Nag11p,
(4) Napy1p — —~=p.

It is clear that for every k € N there are 2F negational formulae Nyp. By
semantical argument we can show that there are at most fifteen nonequiv-
alent formulae up to length k£ = 5. By induction we can prove that every
negational formula Nyp, for £ > 6 is equivalent to some negational for-
mula N,,p of length k£ < 5. From this, we get the final theorem about the
monadic, purely negational fragment of ICL.
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Fig. 1. Poset of monadic negational fragment of ICL

THEOREM 3.6. The set N'/= consists of fifteen elements. Representatives
of its elements are for example negational formulae:

p’ Nr\/p, N—|p’ —|r\4p7 —|—|p7 —|r\J—|r\Jp7 _|NN_|p’ —\—v\u\/p’

Np’ ﬁp7 ﬁNﬁp’ Nﬁﬁp’ ﬁr\u\zp’ ﬁ‘n\/p7 ﬁNNﬁﬁp

Relations between classes of equivalent formulae are described by Lin-
denbaum algebra. In the case of negational monadic fragment of ICL we
start with presenting the poset (NMV* U {0, L, 1}, <), where N* is the set of
chosen representatives of equivalence classes of /= (Fig. 1). The addition
of constants enables to join the two subsets of equivalence classes of even
and odd negational formulae. Closing this poset under conjunction and
disjunction results in a very complex structure with many elements. Thus
we divide the description of it into several stages.
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Fig. 2. Lattice of monadic negational fragment of IPC

4. Closures of the poset of negational formulae

Propositions presented in this section were proved semantically using tech-
niques developed and presented in [2].

First let us consider two parts of the poset given in fig.1: the upper
part consisting of formulae implied by the constant |, namely

P, TP, TP, TP, YYDy I TP, TN Ay Iy, vy D, vy,
and the lower part which contains five formulae that are not implied by _L:

P, ~p, ~~p, ~Tp, TP,

Since all formulae in the upper part of the poset are implied by the
constant L, then they are also always forced in every imaginary world of
every r-model. To highlight this property, we chose for every equivalence
class in the upper part of the poset a representative that is of a form —Nyp.
According to point (3.2) of Fact 3.2 the upper part consists of formulae that
can be refuted only in the root of some model.

Let us recall that in purely intuitionistic case the closure of the nega-
tional fragment 0, p, ~p, ~~p under conjunction and disjunction gives rise
to the lattice given in Fig. 2. All these formulae are contained in the lower
part of the poset. Closing this part under conjunction and disjunction
results in a finite lattice given in Fig. 3.

Note that the disjunction of the form ~—p V ~——p is equivalent to
a closed formula i.e., not depending on the variable p, namely ~_1. This
formula can be described semantically by the set of all its r-models. Namely
its only r-models are one-world models consisting of the root only and with
the two possible valuations, that is r-model M, in which r I p and r-model
M, in which r | p. The rest of the closure is straightforward.
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Fig. 4. Upper semilattice

It would be arduous to present similar lattice for the upper part of the
poset, as closing it under disjunction and conjunction results in a very com-
plicated structure. Nevertheless, we can present semilattices with respect
to join and meet (Fig. 4 and Fig. 5). Again we obtain two closed formulae

As before these formulae can be characterized semantically via their
models. Models for formula ~~_1 are all r-models except for two models
consisting of the root only. Models for the formula —=~~_1 are the same as
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Fig. 5. Lower semilattice

for the formula ~_1, namely M, and M,. Nevertheless these two formulae
are not equivalent, due to the fact that ~L is refuted in any imaginary
world, whereas formula —-~~_L is forced in every imaginary world of every
model.

5. “Classical” fragment of ICL

One of the best known fragments of IPL is its monadic fragment. It is char-
acterized by the so-called Rieger-Nishimura lattice which is the Linden-
baum algebra of the fragment in question and consists of infinitely many
distinct equivalence classes of formulae. It was already mentioned that
when an ICL formula does not contain 1 as a subformula, then it is an
intuitionistic formula, thus the monadic fragment of ICL in the language of
(0,1,V,A,—,p) is simply the Rieger-Nishimura lattice.

The additional constant L in ICL is treated as an additional falsum.
However, in the fragment with L instead of intuitionistic falsum, the ”clas-
sical” falsum L is not the least element of the lattice and we cannot expect
an immediate analogue of the Rieger-Nishimura lattice.

THEOREM 5.1. The fragment of ICL consisting of (L,p,—,V,A\) is finite.

The proof and will be omitted here. Let us point out that contrary to
the intuitionistic example, it is not the case that p A L =1, since =1 — p.
Moreover this fragment is identical to the fragment of (L, p, —, A), because
of the equivalence
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pVL=-p

Let us conclude with one more observation about the monadic impli-
cational fragment of ICL.

THEOREM 5.2. The fragment of ICL consisting of (0, L,p,—) is finite.

Note that due to equivalences
1— p=—""p—=Dp,
~1 = P — ~7p,

the fragment in the language of (p, -, ~, —) is equivalent with the fragment
of ICL in the language of (0, L, p, —).
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