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1. INTRODUCTION

In the previous paper (see Milo 1989) we tried to ana-
lyze the characterization of estimators efficiency and precision
in the case of models with one explanatory variable and scalar
parameter. In this paper the more complex situation of vector
parameter is considered.

Our goal is to formulate some quantitative characterizations
of non-asymptotic efficiency of statistics. They do not pretend
to be final and immediately usable in planning of experiments for
evaluation of efficiency and precision of studied statistics.

In 8 2 we propose characterizations of non-asymptotic effi-
ciency by using characteristics of dispersion of probability di-
stribution.

In S 3 we show how these propositions should be exposed to
further deep studies 1in order to evaluate the indicators in-
variance on such important operations as scaling and translation
of random variables. Some preliminary results concern the com-
monly known statistics: least squares estimator and Hoerl-Kennard

ridge estimator.
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2. CHARACTERIZATION OF NON-ASYMPTOTIC EFFICIENCY

Let g(0) be a vector-valued function of parameter vector O,
0e Rl: In particular g(0) = 0. The Tfunction g(0) may be called
the parameter space reduction function.

It is convenient to accept "aprg(0)" as a name of stochastic
approximate for g(0). Further we consider only aprg(0) = g(Tn),
where TR is a statistic for 0 and the size of g is kg x 1. 1In
particular g(Tn> = Tn< Particular and general problems of sto-
chastic approximation can be found, among others, in the works of
M. Wasan, J. Blum, V. Fabian, J. Koronacki, H. Kushner, M. Ne-
welson, R. Chasminski, H. Robbins, L. Schmetterer, R. Zielinski,
P. Neumann. The formal bases of approximation are given in works
of f.e., A. Smoluk, N. Achiezer, G. Lorentz.

The possible characterizations use:

a) dispersion characteristics (Dg(Tn>, MSEg(Tn))j

b) concentration characteristics (concentration function for
g(Tn), scattering function for g(Tn>);

c) parametric, nonparametric and entropy information measures
about g(0) provided by g(Tn>;

d) characteristics of statistical cost of obtaining values of

- f i t functi T. T ;
(a)-(c) for given two functions g( */Kﬂ)’ a( );

*»n

e) characteristics of numerical cost of calculating g(Tn).

In this paper we consider only the case ().

Some comments about further notations and ideas may prove to
be useful. We shall use the ratio form of efficiency measures. In
some sense a numerator expresses an effect of using an input in
the form of denumerator. More specifically let g~ = g(T" n) de-
note a function g defined on the statistic Ti,n with the index
1. Then the dispersion matrix (or variance-covariance matrix) of
g& is equal DW? = Dy(T%) and the dispersion matrix of Y is
equal DY. These two matrices are basic arguments of our efficien-
cy and precision type indicators.

2.1. CHARACTERIZATIONS USING CHARACTERISTICS OF DISPERSION AND PRECISION

The general form of efficiency indicator is



where ed is the value of a scalar real function of dispersion
matrix Dg(T1>n) of g(T1l>n) and 1id is the value of scalar real

functioVi of dispersion matrix DY for Y = (Y» Yn).

We will use the following scalar functions

trDY, detDY, “max(Y), X1(Y), i » 1, n (@)
trg(Tin), detg(Tl#n), Amax<Dg(T1>n)) .1D)
Jj =1, kg, XjJ = Xj@) is the j-th eigenvalue of A, kg Iis

the order of matrix Dg(), g® =0, e e RV

The most often practice is to use the efficiency indicators
based on det function and sometimes on the trace function. Howe-
ver, when we want to study numerical stability of statistic {Tl,n
or gATi/ﬂ)» then the indicators based on Xian ©r (Xl) are also

attractive options.

Further we shall extensively use some well know Tfacts from
linear algebra on matrix diagonalization and simultaneous diago-
nalization of two non-negative commutative matrices. Due to non-
-negative definiteness of matrix A there exists an orthogonal ma-
trix Of: 0pAOp = Ng, where A = DY, Dg( ). For commutative matri-
ces DY, Dg(.) there exists a matrix 0[] that simultaneously diago-

nalizes both dispersion matrices. It is easy to see this in the
case of linear model

LM = (RnxIC, S, Sy, Y = xB + U, Py = NXxB, 021)),

where: S, Sy are the known probability spaces, Rnxk is the set of
real n x Kk matrices, the probability distribution Py is gaussian
with the mean EY = XB and dispersion (variance-covariance) ma-

trix DY = 021 and x e Rnxk, R e Rk. In the case of LM the least

- squares estimator (l.s.e.) is T1/ﬂ = X+Y = g(TX/h)'
In general, due to known properties of trace and determinant
we have
n n
trDY = £ Xi<DY>" det DY = N Xi(DY) ®
i-1 t i-1



Using (2)-(3.1) we formulate the following, non-relative w.r.t.
other functions g», dlspersional indicators of efficiency of

gl = g(TL,n,!
tr Dg, det Dg,

Eigd 511611 B 5diTiT

Amax~gn

5\ 1727 - Ed4gl £ w,EdIgl “4.1)
max '
where:
X in(Ad)
Wi - @ + vx)/(l + v0), Vi vDY, vt i vDgi and VA i ™~ _ (®»
max

is the bad-conditioning index of matrix A,

+
Ed5gl 5 —————————- Ed2gl, Edégl = w,Ed3gl “4.2)
d * »,i” 1

It is obvious that the indicators Edlgl - Ed6gl are applicable
if Eg(TA*n) = mgA = g(0). For the case mgA ® g(0) instead of DgA
we should use the matrix Dg” = Dg™ + bias g~lbias gM)", where

bias g~ = Eg™ - g(0)

As in (3 we have

K K
9

_ _ g
tr Dg, = Y. X.(Dg,), det Dg, = N X.(Dg,)
1 i-1 1 1 1 i-1 1
It is known that
MSE g = tr 5g1# MSEY = tr DY = tr DY (4.3)

Hence the indicators of non-relative precision-type efficiency,
i.e. eff g in the sense of second order moment"s calculated

w.r.t.g(0), are

MSEg, det Dg,

E*d™ 1 - MSEY E*d2«1 5 det by a4n>
X (Bbg.)

E*d3gl H *ax , E*d4gl 1 w*E*dIgl (4.2%)

max



E

a + v?)
E*d5gl = ————— E*d2gl, E*dé6gl = w* E*d3gl (4.3%)
@ ¢ v 1
where w* - (@ + vj), Vvj = v¥ = vy and v* = Xmin (A)/

/Xmax(A) is the index of bad-conditioning of A.
Note: For Eg™ = g(©) we have MSEg™ = tr Dg™ = tr Dg”, bias
gL = 0, Dgx = Dgx.

B, g(0) = xB, MSEY = o2n,

In the case of LM we get O T1 g

=x+Y, g(Tln)=XT2 n, ETIn 0, Eg(TIn) = x0 = g(0), MSEgx

= o2tr(x"x)_1, DTIn = DT~ , Dgx = Dgr So one uses (4)-(4.2).
The indicators in (4)-(4.2), (4.1*)-(4.3*) are computable for
each statistic 16 N, N is the set of natural numbers.
For comparison of statistics between themselves it is necessa-
ry to formulate relative dispersion-type indicators of efficiency

of g,I w.r.t. g 1,1° e N, where 1 is the index of studied

statistic and 1° is the index of the dispersion non relatively
most efficient statistic.

In the case of indicators from (4)-(4.3*), the index 1° is
such that

Edjgl? = min Edjgl, jJ =1, 6
J IeN

Another two options are and 1° that satisfy:

Edgl:° = min Edjgl§, j = 1, 6,
j 3
Edgl°® = max Edjgl?, j =1, 6.
j 3
To these three options of fixing 1°, 1°, 1° correspond the
following indicators of relative dispersional efficiency of g», 1,

1°, 1°, 1°e N, J=ITT:
i Edjgl? i Edgl°
Edjgl 37 Edjgl Edjgl 11° = Ed}éi o)



Edjgl]l1-° = Salal G.D
Edgl

When norming principle 1is not so important we can put instead of

1M or 1°, 1° any index 1* & 1 and we get

Edigilt =u ff 52
On the basis of ((4.1*)-(4.3*) we formulate the following coun-

terparts of (6)-(.2) for 1, {g, 1°, 1°e N, J * 1, 6s

Exdjglt
E*djgl11? = — ———
19 3 E djgl
E*dgl?
E*djgl]l° l«-4
E*djgl]l° = E ----—- <6-2>
joll E agi
E*djgl 11* = EIdj 6*3
jol = Elgjor "

where indices 1°, 1°, 1° are fixed as above and 1* e N.

The above efficiency and precision indicators will be further
studied in terms of their invariance with respect to scale and
translation changes.

3. INVARIANCE OF EFFICIENCY AND PRECISION INDICATORS

We are aware that the proposed indicators have different im-
portance in studying properties of statistics by the use of Monte-
-Carlo studies. However, they provide the framework for more de-
tailed evaluation of them. What kind of evaluation is needed we
now show by considering the most simple dispersion type indica-
tors. We try now to check two important properties: scale and
translation invariance. Let us begin with (4). Assume that

gl = (X"x)-1x"Y = x+Y. By well known facts about LSE of the form

x+Y we write for LM



DY = 02In, Dg = c2(x"x)_1, trDY = no2, trDg" = o2tr(x"x)-1
Let now Y ayY, a e R. By properties of operator D we have

DaY = a202In, Dgx(a@) = a2a2(x"x)_1,

tr DaY = a2o02n, tr Dg”a) = a2o02tr(x"x)-1.

Hence EdIgl = n_1 tr(x"x)-1 = Edlgl(a).

Suppose now that Y Y-c. Therefore by the properties of Y, D
we have D(Y-c) = DY, Dg”~c) = Dg©

Hence

COROLLARY 1. For Y from LM and g™ = x+Y being the LSE, the

indicator Edlgl is scale and translation invariant.
Take now Ed2gl. It is known on the grounds of assumptions of
LM and properties of det, D, that

det DY = det 02In = 02n, det Dgx = o2kdet(x"x)_1
Ed2gl = ak/n det(x"x)"1.
Let Y a¥Y, a e R. Then
Ed2gl(a) = (aa)k/n det(x"x)"1 since det DaY = (ao)2n,
detDgN(a) = (ao)2kdet(x"x) 1
If Y=>Y - c, then
det D(Y - ¢) = det DY = o02n det Dg”~c) = det Dgx o2kdet(x"x)\
So Ed2gl(c) = ok/n det(x"x)"1 = Ed2gl. Therefore

COROLLARY 2. For Y and gx fulfilling Corollary 1. The indica-

tor Ed2gl is not scale but it is translation invariant.
Recall “*maxIDY) = °2" *max*Dgl®™ = is the smallest

eigenvalue of x"x. So Ed3gl = X~1. Now let Y =may.

It is obvious that ‘uan(DaY) = a2c2, XW?' (Dgi(a)) = aoZX[l.

In the case Y =Y - c we obtain Xman Oy -¢c) = Xman DY),

Xmax (Dgl (c*) = \nax(Dgl® and = Therefore



COROLLARY 3. For Y, gt as above the indicator Ed3gl
and translation invariant.

is scale

By the definitions of Ed4gl, EdSgl, Ed6gl, and the above co-

rollaries we have.

COROLLARY 4. For Y, gL from LM the indicator Ed4gl is scale
and translation invariant.
COROLLARY 5. For Y, g~ from LM the indicator Ed5gl is not
scale but translation invariant.
COROLLARY 6. For Y, g~ from LM the indicator Ed6gl 1is scale
and translation invariant.
Note 1. We have omitted in S 2-4 another natural option.
Let
1=, 112 . _
Ed7gl" = ————where || || denote Euclidean norm. It is
1IDY 112

obvious that for the above Y, g©

h
IDY 112 = a2n, 1IDgx||2 = 02 E X"2
i i-1

Ed7gl = nL £ Xx7
i-1

Due to DaY = a202 In, Dg”a) = a202 (x"x)-1

1IDaY 112 = a2o02n, J]ibgna) ||2 = a202 T X*2,

we have

11Dgx@) 112/ 11DaY|]2 = n"1 £ X~2,

and it means that Ed7gl is scale invariant.

Because of D(Y - ¢) = D(Y), DgL(c) = Dgl# the indicator Ed7gl

is translation invariant.

Let us now consider the biased ridge estimator of Hoerl-Ken-

nard
Tn = B(c) = (X*X + cl)_1x"Y.

It is well known that in the case of LM and ¢ > O



DTn = 02(X"X + CI)*1 X*X(XX + CI)"1,

n 1 (Xi +c¢)z

Let Y >Y -d, de R. Then trD(Y - d) = o2n,
trDT(d) = trDTn.

Suppose Y —vaY. Then tr DaY = azo%n

o -
trbT@) = a 0 S —=*—.
Hence

COROLLARY 7. The dispersion type indicator EdIgl for the
Hoerl-Kennard estimator (HKE) is invariant with respect to scale
and translation changes.

Recall that B(c) is biased with bias B(c) = bias TR = (X"X +

+ cl) _1x"x B - B. Hence

MSE T = trDT + bias2T = 02 S ————— s + RTAR, MSEY = o2n
mn mn mn (X1 + ¢c)2

A= [(X"X + c1)-1x"x - IT"[(X"x + c1)-1X"X - I].
In the case of Y -+Y - d we have

MSE T(d) = trDT(d) + B AB + d2I*X(X"X + cl)"2X"1 +

2dR"(X"XIX™X + cl)-1 - IMX"X + c1) 1X"1.

MSE T MSE T (d)
Since * MSE Y(dT """ therefore

COROLLARY 8. The precision type indicator E*dIgl, when 1 is
HKE, 1is not scale and translation invariant.

4. FINAL REMARKS

The results obtained above are only a small part of a long
list of results on invariance. In this paper we wanted to
establish some preliminary invariancy results for the derived in-
dicators of efficiency and precision. They would be a starting



point for further studies. It appeared that there are situations,
even under the most simple model LM, that some of the analysed
indicators are not always invariant with respect to scale and
translation operations.
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CHARAKTERYZACJE EFEKTYWNOSCI I PRECYZJI
CZESC 1

Celem artykutu jest podanie nowych charakteryzacji wskaznikéw efektywnosci
i precyzji wektorowych statystyk. Dla dwu popularnych wzoréw estymatordow (MNK
i estymatora obcigzonego Hoerla-Kennarda) przeprowadzono analizg niezmienni-
czosci niektoérych zaproponowanych wskaznikéw. Pokazano, ktore wskazniki sg nie-

zmiennicze i dla jakich statystyk.



