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MULTIVARIATE BIASSAY IN 
A TWO-WAY ELIMINATION OF HETEROGENEITY DESIGN

Abstract. Estimation of the constant potency of a test preparation relative to 
a standard preparation in multivariate parallel-line assays is discussed. The case when 
doses o f both preparations are administered to experimental units forming a two-way 
elimination of heterogeneity design is considered. For such a design, a multivariate linear 
model o f observations is described and test functions for the hypotheses about parallelism 
and relative potency of the preparations are presented.
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I. INTRODUCTION

One of the fields of the biometric research is comparison o f the 
influence of a test preparation on multivariate observations to that of 
a standard preparation. One of the methods of such comparison is to 
provide estimation of potency of a test preparation relative to a standard 
preparation. In the case when doses of the preparations are administered 
to experimental units characterised by two-directional changeability, a two-way 
elimination of the heterogeneity design should be applied. In the paper of 
H a n u s z  (1995, 1999) such designs are considered in the case when the 
standard and test preparations are administered in separate designs. In 
practice, however, the case when both preparations are administered in the 
same design could also occur. Such designs allow for elimination of two 
sets of nuisance parameters, which form row effects and column effects.
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In the paper, we consider the so called parallel-line designs with 
multivariate variables having the multivariate normal distribution with the 
same covariance matrix. We also assume that variables arc mutually 
independent.

П. NOTATIONS AND GENERAL LINKAR MODEL

Let S  denote the standard preparation which is known and T  -  the 
test preparation, which is unknown. Suppose that the preparations are 
applied in and vr  doses denoted by: mS), for the standard
preparation and uTi, un , ut„t for the test preparation. Let us consider 
an experiment in which doses of both preparations arc allocated to 
experimental units arranged in ft, rows and b2 columns. With respect to 
preparations, such an experiment is uniquely characterized by three types 
of incidence matrices: Nw -  dose and row, N2l -  dose and column and N3i 

row and column, where i = S, T  denotes an index for a respective 
preparation. For the standard and the test preparations taken together, the

T n  Л T n Пappropriate incidence matrices are equal to: N, =  , N 2 =  ^ s ,

N3 =  N3y +  N3r. Moreover, for v =  vs -I- vT, the following relations hold: 
N', I, =  N31 h =  к,, N '21„ =  N31 h =  k2 and k,, k2 are vectors of row and 
column sizes.

By way of illustration, let us consider an experimental plan with three 
doses of the standard preparation and two doses of the test preparation 
applied in the following way:

Column 1 Column 2 Column 3

Row 1 USl US2 US1 
U T\ U-P2

US\ UfTi
ur\

US2 US3 
UT2

Row 2 US2
UT1 UT2

USi US2 USS 
UT\ UT1

USl US2 US3
UT2

This plan is characterized by the following incidence matrices for 
preparations:
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N,., =
2 3
2 3
3 2

N — ^1 N —
’ — 2 3 ’ ~

N3V =  [ п  3 }  N3r =  [2 2 l }

2 2 1 
2 1 2 
1 2 2

N -  Г2 2 °1 
’ 2r [2  1 2 j ’

which yield the incidence matrices for the entire plan:

N Г2 2 3  j 2 2 ] '  N  _
1 L 3  3  2 1 2  3 J  ’  1

2 2 1 1 2 2 
2 1 2 1 2 1 
1 2 2 j 0 2

Let us assume that the influence of the preparations on the experimental 
units is measured by the number of p  different traits, forming a /7-vari ate 
vector of observations. Each />-variate observation is then determined by 
the dose of the preparation and also by (p x 1) vectors of row effects, 
column effects and random errors. As far as the relative potency of the 
preparations is concerned, the row and column effects have to be treated 
as nuisance parameters.

A general linear model for observations in the experiment may be 
written as follows:

Y =  XB (1)
where

ľ Y* l, X =  [D : A], D = "D .5 !

LY7J _D.r !

"1. 0,
x s 0

A = »

0 1Л" t 1
X0

, =  [I>, D J.

В
~  M ’ B' ~  к ’ B * ”  E [ e *]’

and Y is a (« x p) matrix whose rows are p -\ariate observations, D is 
a (n x (6, + b2))  binary matrix, whose submatrices DtJ (/ =  1, 2; j  =  S, T) 
are related to rows and columns effects for the standard and the test 
preparations, respectively, 1* denotes a vector of к  units, x5 and x T are 
vectors of the logarithms to base 10 of all applied doses of the preparations 
S  and T  arranged in the same order as the observations in Y, n = ns +  nT
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and ns, nr are the numbers of experimental units where standard and test 
preparations are applied. Moreover, matrix В of unknown parameters 
consists of the matrices of row and column effects (nuisance effects), 
denoted by B„ and the matrix of intercept vectors and slope vectors for 
the standard and the test preparations. The rows of the matrix of errors 

E  arc assumed to be independently and identically distributed as Np (O', 
Z), with £  -  a (p x p) unknown covariance matrix.

III. HYPOTHESIS ABOUT PARALLELISM

Test preparation can be compared to the standard preparation by means 
of the relative potency when both have a similar impact on the experimental 
units. Such similarity occurs in the so called parallel-line assays ( F i n n e y  
(1952)). For such assays, in the model (1), the vectors of slopes have to 
be equal. This equality of the slopes vectors can be formulated as the 
following hypothesis of parallelism:

Щ  : С  В =  0' versus П \  : С' В ф 0' (2)

where С =  [0*I+V с'], с' =  [0, 0, 1, -1].

То test H nß we can use lambda Wilks' statistic which takes a form:
ISJ

A =
|SE +  S„|

(3)

where SE =  (Y -  XB)' (Y -  XB), SH =  (C'B)' (C '(X 'X)-C)-1 (C'B), В =  
=  (X'X)-X'Y.

By analogy, as in H a n u s z  (1995), instead of the form given in (3) 
we use a transformed form:

A =  I 1 +
(C'B) S ę (C 'B)' 

С (X X) с (4)

Since rank (C') =  1, -  ran— ®  JLľL_i . j ^  has the F  distribution with
P A

(p , n-rank (X) -  p  + 1) degrees of freedom.
To calculate the test function in (4) and to prove testability of the 

hypothesis Щ  in (2) we give the general inverse to the matrix X'X. Note

, where =  DÍD, andthat X'X = D'D DA and D'D =
li"*

1 N 3

AD A'A N' . 3 1
11
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к 2 =  D2D2 arc diagonal matrices having entries equal to row and column 
sizes, respectively, N3 is the incidence matrix defined in the previous section. 
It can be proved that the general inverse to X'X, satisfying the condition: 
X'X(X'X)~X'X =  X'X, is a matrix of the following form:

(X'X)- = A +  A D'AH ADA -  A D A H

where A =  (D'D)

- I I  A DA

rk f (I, +  N3(T N'3k f ) I -  k f N ,С
_i________________ i__

- c - N ; k f  j с

H
(5)

С =  k* -  N ;k fN 3, H  =  А ФА, Ф =  I„ -  DA D' =  I„ -  D, k f  D, -

+ (D2 -  D ,k f N 3) C  (D2 -  D, k f  N3)', D, =  ^ * * J ,  D2 =  , k f  denotes

the inverse of kf, C" and H “ -  the general inverse to С and H, respectively.
Using the general inverse in (5), testability of the hypothesis Щ  could 

be proved. First we prove a useful lemma.

Lemma 1. The matrix Ф fulfils: (i) ФО =  0, (ii) Ф1„ =  0, (iii) Ф' =  ф, 
(iv) ФФ =  ф.

Proof. Let us notice that

(i) Ф1), =  D, -  D, k f  D,D, -  (D2 -  D ,k fN 3)C - (D'D, -  N ^k f D'.D,) =  0, 2m

N,

ф о 2 =  d 2 -  D, k f d ;d 2 -  (D2 -  D ,kf N3)cr  (D'D2 -  N 'k f  d ;d 2) =

N,

=  D2 -  D, k f  N3 -  (D2 -  D ,k f  N3) C“С =  0

and finally we get ФО =  [ФО,, ФDJ =  [0, 0] =0.
In the second equality we used the fact that (D2- D , k f N 3) C“C =  

=  D2 -  D,k"f N3). It is proved in Lemma 2.1 of P r z y b y l o w s k i  and 
W a 1 k o w i а к (1981).

(ii) Ф1„ =  1„ -  D, k f  D,l„ -  (D2 -  D ,k f  N3) С (D'21„ -  N3 k f  d ; i j

=  1„ -  1„ -  (D2 -  D, k f  N 3)C~(k2 -  k2) =  0„

(iii) This equality holds since In - D , k f D , )  is symmetric and 
(D2 - D ,  k fN 3) C ( D ' - N ' k f D ; )  is invariant on the choice of general
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inverse to С (see Lemma 2.2 of P r z y  by  l o w s  ki  and W a l k o w i a k  
(1981)). As C C C  =  С so C '(C -)'C  =  C' and С' =  С so C (C ) 'C  =  С 
hence (C~)' is the general inverse to C.

(iv) ФФ =  Ф -  I), k f Б'.Ф -  (Dj -  D,kY N3) С (0 'Ф  -  Nj k~f Э'.Ф) =  Ф

0 0 0

Theorem 1. The hypothesis 1Ą : C'B =  0' is testable in the model (1).
Proof. We prove that C'(X'X)- (X'X) =  C', the necessary and sufficient 

condition for testability of the hypothesis given by R a o  (1965, § 4.1.2.), 
is fulfilled. Multiplying the general inverse given in (5) by X'X in (1) and 
using the equality from Lemma 1, we obtain:

(X'X)'(X'X) =
Л Л j Л D' A( I 4 - H U )

J H  H

C'(X'X)-(X'X) =  [O', c 'H  H]

Now we have to show that c ' H I I  =  c'. From Lemma 2.2.4 (i) of R a o  
and M i t r a  (1971) this equality holds if and only if the space spanned by 
c' is included in the space spanned by the rows of matrix H. It can be 
shown that rows of II are orthogonal to a vector w = [1 , 1, 0, 0]' 
corresponding to only one zero eigenvalue of H. Namely, A w =  l n and 
from (ii) of Lemma 1 we have Hw =  A^Aw =  А'ФА1„ =  0' what denotes 
that the space spanned by w is an orthogonal complement to the space 
spanned the rows of H. Moreover c' is also orthogonal to w, therefore c' 
has to be included in the space spanned by the rows of H. •

Using the general inverse in (5) lambda Wilks’ statistic in (4) could be 
described in the following form:

A =  1 +
(сТГА'ФУ) S é1 (с'Н А'ФУ)'

c 'H  с

Actually, under the truthfulness of I f  the value of test function F® is 
equal to:

^  _  n - b y - b j - p -  2 (cTL А' ФУ) Sé1 (c'H А' ФУ)' 
p c 'lT e



IV. HYPOTHESIS ABOUT CONSTANT RELATIVE POTENCY

Let us assume that the hypothesis I fß in (2) is not rejected on a given 
significant level a. In further considerations we could take the same vector 
of slopes for both preparations and transform the general model (1) to the 
following form:

where

X =
Dir l)2r 0 1

Y =  XB +  E (6)

1. 0 I x 'J ,  В =  [«o' к' as a T • p]', E =  ^ J

The hypothesis about the constant logarithm of the relative potency of 
preparations is of the following form:

№  : С :В  =  0 ' versus № :  C 'B  Ф 0 ' (7)

where [o;1+v c;], c;  =  [1, - 1, -ц ]
To test the hypothesis Ш  in (7) we use lambda-Wilks’ statistic of the 

form given in (4), putting and (k'X)~ instead of С' and (X'X)“, respectively. 
The general inverse (X'X)- could be obtained from the form given in (5)

replacing A by Ä = 1 „ 0s I 
0 1„ i" t

J  and II by II =  Ä'OÄ.

Theorem 2. The hypothesis Н» : C^B =  0 ' is testable in the model (6). 
Proof. As in Theorem 1 we show that the condition of testability 

c; (X'X)-(X'X) =  c; is fulfilled in the model (6). In this model we have:

(X'X)-(X'X) =
A A j A D Ä ( I 3 - I T H )

H H

c;(X'X)-(X'X) = [o', C;fl-H]

As in the previous theorem, we will show that c^H "H  =  c^. It can be 
proved that the rows of II  as well as are orthogonal to the same vector 
w =  [1, 1, 0], which is the eigenvector corresponding to the only zero 
eigenvalue of H. So the space spanned on is included in the space 
spanned on the columns of H?

The test function for the hypothesis I f l  depends on ц  and takes the 
following form:
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_ / (c;»)sj(c;By у  / (СдЯ-Д-фу) Sę (с„'й~Д'фу)' у  
I, c;(x'x)-c, J  ̂ + c;h-c, )

When the hypothesis //j! is true then -  ( n -  r(X) -  4----- ?__ )•
\  2 шпА (/i)y

■ /« (A O)) has the x  distribution with (/>-1) degrees of freedom ( W i l l i a m s

(1988)). If for some value of p. \(J i)  rcaches the maximum and -  y i  -  r(X) -

+ ^2 * + пьЛ1( ^ ) )  ln does not cxcccd lhc critical value x (a) on the
significant level a, then we adopt ft as the estimator of the logarithm of 
the relative potency.

V. CONCLUSIONS

Comparing the results obtained in the present paper to those given in 
H a n u s z  (1995, 1999) we can say that the hypothesis about parallelism is 
testable in both considered experiments with a two-way elimination of 
heterogeneity designs. The hypothesis about the relative potency is testable 
in the case when both preparations are administered jointly to experimental 
units, forming a two-way elimination of heterogeneity designs. The same 
hypothesis is not testable in the case when each preparation is applied in 
a different two-way elimination of heterogeneity design. In the latter case, 
to test the hypothesis we need to put a restriction on nuisance parameters.
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Zofia llanusz

W IELOCECHOW E DOŚWIADCZENIA BIOLOGICZNE W UKŁADZIE 
Z DWUKIERUNKOWA ELIMINACJĄ NIEJEDNORODNOŚCI

(Streszczenie)

W pracy rozważa się problem testowalności dwóch hipotez związanych z estymacją 
względnej mocy dwóch preparatów stosowanych we wspólnym układzie z dwukierunkową 
eliminacją niejednorodności jednostek eksperymentalnych. Dla takiego układu przedstawia się 
model liniowy wielowymiarowych obserwacji, hipotezy związane z estymacją względnej mocy 
preparatów oraz funkcje testowe do weryfikacji hipotez zerowych. Dowodzi się, że obydwie 
hipotezy dla rozważanego układu doświadczalnego są testowalne.


