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ON SOM E INFERENTIAL PROCEDURES 
FO R RECEIVER OPERATING CHARACTERISTIC CURVES

Abstract. In the paper two significance tests for receiver operating characteristic curves 
(ROC) are proposed. Both tests use an asymptotic x2 distribution o f the test statistics.
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1. NOTATION

Suppose a diagnostic test is used to detect the presence of a disease. 
Let X  be a random  variable representing the test result. Denote by л0, я, 
a disease group and a control group, respectively. We will assume that an 
individual comes from n0, if X  exceeds a fixed threshold X,  say, and from 
7Cj, otherwise. Let

С — X  \ tc0, Z=.- .X\nu

variables С and Z  represent the diagnostic variable X  in the respective 
populations 71q and я,. Let F and G be cumulative distribution functions 
(CDF) o f С and Z, respectively.

2. THE R O C  CURVE

The ROC  curve (receiver operating characteristic curve, see: G r e e n ,  
S w e t s 1966; L l o y d  1998) is a plot of p0 = 1 — F(x) against p, =  1 — G(x) 
as x  varies over the support of X.  In biomedical context p0 is termed 
“sensitivity” , and 1 — p, is termed “specificity” .
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In statistical terms, the ROC  curve displays the trade-off between “po­
wer” and “size” of the test with a rejection region {X >  x} as x  is varied. 
The power P(X > x  | я0) is the probability of a true positive diagnosis, and 
the size P(X >  x  | я,) is the probability of false positive diagnosis. If X  is 
continuous, then ROC  depends on F, G via the formula

ROC(v) =  1 - F ( G _I(1 — v)), v e [0 ,1] (1)

Indeed, let us denote v =  1 — G(x) then G(x) =  1 — v and x(v) =  G ~‘(l — v). 
Thus, for v e [0 ,1] we receive ROC(v) = 1 —F(x(v)) what leads directly to (1).

1 -  G(x)

Fig. 1. An example o f a ROC  curve 

S o u r c e :  own elaboration.

Estimation of ROC(v) is usually based on replacing F and G by their 
empirical counterparts Fm and G„ defined as follows

=  ~  t u c , < x )  (2)
m i - i

z k z , < x) (3)
n i - i

where \{A)  denotes a characteristic function of an event A, and

Cx, C2, C m, Z , ,Z 2, —, Z„ (4)

are two independent random samples drawn from populations n0 and я,, 
respectively.

The ROC  curve summarizes the separation between the distributions 
F and G in two populations я0 and я,. The higher is the ROC  curve, the 
greater is the prediction accuracy of X.  If  the ROC  curve of a variable



X  lies on the diagonal of the unit space then there are no difference in 
distributions of X  in the populations я0 and я,. This concept constitutes 
a background for two x 2 goodness-of-fit tests discussed in details in the 
next section.

3. TH E GOODNESS-OF-FIT TESTS FOR R O C  CURVES

We will consider the problem of testing two null hypotheses. The first 
one states, that the ROC  curve lies on the diagonal

H0: V ROC(v) = v (5)
V 6 [ 0 ,l]

The second null hypothesis assumes that ROC  functions for two diagnostic 
variables X A and X B, say, are equal

H0: V ROCa(v) =  ROCB(v) (6)
ve(0,1]

The alternatives for both cases (5) and (6) take the general form H , : ~  H0 
and H j : ~  H 0, respectively.

In order to test the hypotheses (5) and (6) we will focus on a random 
variable G(C). It easy to proof that a CDF of a variable defined as

W =  1 -  G(C)

is equivalent to  the ROC function (1). Indeed, we have for v e [0 ,1]

P ( l f <  v) =  P(1 -  G(C) < v) =  P(G(C) >  1 -  v) =  P(C >  G - '( l  -  v)) =

=  l - P ( C < G - ‘( i - v ) ) =  1 - F ( G - ‘( 1 - v ) )  =  i?OC(v).

Unfortunately, it is usually impossible to observe G(C) without any para­
metric assumptions concerning the function G. In our considerations we will 
replace the unknown function G with its empirical counterpart G„ defined in 
(3). Thus, we will consider a random variable G„(C) instead of G(C).

It can be seen, that Gn(C) takes values from the finite set



To find its probability distribution function let us denote by R, F  the 
C D F’s of G(C) and C, and by r and /  the density functions of G(C) and 
C, respectively. Notice, that for x e [0 ,1] the following equalities hold

R(x)  = F ( G - [(x)), r(x) = f ( G ~ l(x))[G~l(x)]' (7)

Thus, for a fixed ie { 0 ,1 ,...,n} we have

P ( 4 ( C )  =  ^  =  Q  J G'(x)[l -  G (x ) f  - ‘f (x )dx .

Denoting by у  =  G(x) we obtain

x =  G - ‘00, dx = [G-\y)]'dy,

and

p( G„(0 = - )  =  ('; )Í/(1 - y y - ' ň G - ' m G - m ' á y
i \  / n ' 1

This result and (7) lead to the probability distribution function of G„(C) 
of the form

P( G„(C) =  -  J =  I . )Jy'(l -  у У - ' г Ш у ,  M  0 ,1 ......n} (8)
о

3.1. Testing the null hypothesis H0

If the hypothesis (5) is true then r(y) = 1 for y e [ 0 ,1] and (8) reduces to

2 . . .  \  / И' 1
P[Gn(C) =  -  |H 0J  =  - y ) '- 'd y ,  ie { 0, l,...,n}  (9)

Let B(a,ß)  be the beta function with parameters ct,ß, i.e.

B(*,ß) = \ y * - ' ( l - y y - ldy  (10)
0

Denoting by Д -) the gamma function, the following properties are well- 
-known

B(oi,ß) = r(oc)r(ß)ir(« + ß), Г(п +  1) =  n! n e  N  (11)



From  (9)—(11) we receive

p(g„(C ) = -n I H 0~j =  ( Л  jy '(l -  y r - 'd y  =  Q b ( í  + l , n - i  +  l) =

n \  r (i +  1 )Г(п -  i +  1) _  / n \  i!(n — Q! ____\
i )  I \ n  +  2) yzy (n -f-1)! n + 1

(12)

Consider the random sample

G„(C,), Gn( C J , G„(CJ (13)

derived by a simple transformation of sequences (4). Basing the use of the 
sample (13), we can verify the null hypothesis (5) by means of the goodness- 
of-fit test statistic

■ ( щ - m p ŕ  (14)
(Го rnp

where m is a size of the sample (13), p = l/(n  +  1) represents the theoretical 
probability (12) that G„(C) =  i/n, and m, stands for the empirical number 
o f observations in (13) equal to i/n. i f  m -»co , then Z, under H0 has an 
asymptotic %2 distribution with n degrees of freedom.

3.2. Testing the null hypothesis H 0

Let X A, X B be two diagnostic variables and nQ, n [ be two populations of 
individuals. Let us denote

CA =  Х А\яа, CB = X  в\л0, Z A = Х ^ я ^  Z B X

and consider m independent copies of CA, к independent copies of CB, and 
n independent copies of both Z A and Z B. In other words, let us consider 
four independent random samples drawn from n0, я,

C/ll, CA2 , CAm, CBh Cm, CBk (15)

Z A\, Z A2, Z An, Z Bl, Z B2, . . . , Z Bn (16)



Two sequences in (15) can be treated as independent random samples of 
two diagnostic variables X A, X B drawn from na and two sequences in (16)
-  as independent random samples of X A, X B drawn from nv Simple 
transform ations of (15)—(16) lead to the following two independent, random 
sequences

GAn(CAl), GAn(CA2) , ..., GAn(CAm) (17)

GBn(CB1), GBn(Cm) , ..., GBn(CBk) (18)

where GAn, GBn represent empirical distribution functions derived 
according to the formula (3) from Z M, Z A2, Z An and Z BU Z B2, Z Bn 
respectively.

If the null hypothesis (6) is true, then the variables GAn(CAi), i =  1 ,2 ,..., m 
and Gb̂ C ^ ) ,  j  = 1 ,2 ,..., к in (17)-(18) are identically distributed with 
probability distribution functions expressed by (8). Further we will consider 
samples (17)—(18) grouped into the Tab. 1.

T a b l e  1

i/n G J C J °вп(Св) £

0 N so B.0
1 /П n ai N ,

( n - l ) / n "вп- i
1 " л .

£ N ,  =  m Ca

II N  =  m +  к

Now, we can verify the null hypothesis (6) by means of the test statistic 
of the form

If N  ->oo, then Z 2 under H 0 has an asymptotic / 2 distribution with n degrees 
of freedom.
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Agnieszka Rossa

O  PEW NYCH TESTACH DLA KRZYWYCH OPERACYJNO-CHARAKTERYSTYCZNYCH

W pracy zaproponowano dwa testy istotności dla krzywych operacyjno-charakterystycznych 
(RO C ), oparte na asymptotycznym rozkładzie statystyk testowych x2-


