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ON MEAN SQUARE ERROR
OF SYNTHETIC REGRESSION ESTIMATOR

Abstract. The problem of estimation of the total value in a small domain is considered.
Because of the small number (or the lack) of elements of the considered subpopulation in
the sample, information on all drawn elements is used. The synthetic regression estimator is
presented. The equations of the bias and the mean square error for any sample design are
derived. The problem of the assumptions on the population and the domain’s structure due
to the bias and MSE reduction is considered. The importance of the bias influence on the
accuracy of the estimation is presented. The possibility of the increase of the MSE and bias
due to the increase of the sample size is shown. The approximate equations of the bias and
mean square error for the simple random sampling without replacement are derived. The
accuracy of the synthetic regression estimator (based on approximate equations and the
simulation study) and the Horwitz-Thompson direct estimator is compared. The comparison
is based on agricultural data from Dgbrowa Tarnowska region. The entire population consist
of 8624 farms and it includes the domain of interest - Bolestaw commune - with 588 farms.
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1. INTRODUCTION

Synthetic estimation is considered both in Polish (e.g. Bracha 1994),
Bracha 1996, Getka-Wilczynska 2000 and in foreign literature (e.g.
Sé&rndal, Swensson, Wretman 1992). In this paper equations of the
mean square error and the bias of the synthetic regression estimator are
presented taking differences between the population and domain’s structure
into consideration.

The term *“synthetic” means, that the estimator uses information both
on surveyed small domain and period of time and also on other domains
and/or periods of time. The estimator considered in this paper is domain
indirect estimator. The idea of synthetic estimation is based on the assumption,
that some relationship between the variable of interest and the auxiliary
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variable observed in the entire population is the same in small area.
Because most often the assumption is not met, it must be stressed, that
synthetic estimators are biased.

2. MEAN SQUARE ERROR (MSE) FOR ANY SAMPLING DESIGN

Considerations are conducted for any sampling design. It is assumed,
that the sample Sis drawn from the entire population by sample design
P(S) with first order inclusion probabilities where i=1, .., N. For
any sample S with size n drawn from the population e with the size N,
Sd= sni},,, where the d-th domain is denoted by ed. The size of Sd
equals nd (random variable) and the size of ed equals Nd. The set of
elements of the population, which belong to d-th domain ed, could be
written as ftd= Sdu J d, where Sd denotes elements of the J-th domain,
which were not drawn to the sample. Equations of the MSE and the
bias for simple random sampling without replacement will also be derived
in this paper.

Synthetic regression estimator of total value in small domain, which is
most often more precise than synthetic ratio estimator, is as follows:

fSYN-regr = Nd[f + J}(xd- X)] =" V=g +NJ (xd~ x) )

where
Nd - small domain size,
N - population size,
n J n
Yy = Y 1- Horwitz-Thompson (HT) estimator of the mean value
" ieS ni
of the variable of interest in the population,

X e
X = Y 1- HT estimator of the mean value of the auxiliary variable
N us ni
in the population,
xd - the mean value of the auxiliary variable in d-th small domain,
x - the mean value of the auxiliary variable in the population,

A= — e - - the estimator of regression coefficient in the
Kx-f)2'

ieS L
population,



Yrese= gr(Y + B(5i_X) - regression estimator of the total value in the
population.

Let the bias of the regression estimator of the total value in the
population be denoted by Bregr= E(Yre*r—Y). The bias Bregr for simple
random sample without replacement is as follows (e.g. Wywiat 1992, s. 137):

K ...= E( Y) _ ZTH{*2(x.y) - +
+0(N n~2) (2)

where

KAXy)-  ci(xy)

fc3(x) = . ,
S/CZX)[(I(X)- Q(X)] 4/c20")[c4(x) - ci(x)]
=c4(x)cj2x),
cxry = CHo)
' Je2(x)c2y)
CM =il (xi-x)rcy) =~ £ (y,- y)r, cri(x,y) = I £ (xi- *)r(tt- Y)*
ie(l iv (eit n i6H

Let us derive the equation of synthetic regression estimator of the total
value in small domain for any sample design:

E(ys™-r..0 —yd= ~ E(?"*') + EO)Nj[xd-x)-Y d- Y +~]JY =
w N N
= B + Etf)NJIxt-x) + (~ Y - y\ = (3)

e+ ED) X-X)-N Y-

If the mean value of the variable of interest in the population equals
the mean value of the variable of interest in d-th small domain and if the
mean value of auxiliary variable in the population equals the mean value

of auxiliary variable in d-th small domain, then E(Y$rN~reer) - Yd= N Brear.

In this case the bias of synthetic regression estimator of total value in
small domain is the function of the bias of regression estimator of the
total value in the population and it is the less, the less is the value of



ratio of domain size and population size. It is worth stressing, that for
simple random sample it is of order O(N m~1), so it decreases due to the
increase of sample size.

The equation (3) could also be written as follows:

Breer-(E{J})-B) nﬁ,ax - X +

ANy -0 - A - X

*[(

Let us notice, that the value of NY—yA —RBi™ X —Xd
does not depend on sample size. Let Us consider the expression
N Breer —(E(4) —B) —R("jy X —-~¥ |- The absolute value of the bias of

regression estimator of total value in the population denoted by the
expression Brear reduces due to the increase of sample size. The same
property has the bias of estimator of regression coefficient denoted by
(B(ft) —B)- Because the limit of the sum of sequences equals the sum of
t N IN
—dB reer—(E(ft) —R) —R[ dX - X .
N \N
decreases due to the increase of sample size. The absolute value of this
expression can decrease monotonically due to the increase of sample size.
It should be mentioned, that if values of both considered elements, into
which the bias of synthetic regression estimator was decomposed, have
opposite signs, then the absolute value of the bias of synthetic regression
estimator can grow due to the increase of sample size. It is also possible,
that the absolute value of the bias of synthetic regression estimator does
not change monotonically due to the increase of sample size.
Analysing the equation (3), it is worth stressing, that using synthetic
regression estimators it should be assumed, that:

«M _ and &4)

what can be written as:

Nd= Xd=Yd
N X Y



Comparing aforementioned assumption (4) with assumption using for
. . . . . X Y .
synthetic ratio estimator given by expression n y it should be men-

tioncd, that assumption for synthetic regression estimators is more re-
strictive.

Let us derive equation of the mean square error of the estimator
YSYN rey taking the assumption (4) into consideration.

MSE(ysw-iw) = E A~ dY>» +Nj(xd-x)- Yd =

Eciij + N Y- WY+ " * -0 -Yd
_E((Y"™- vy+rjr- Y,-¢ - E® + X-ny =
= + Y.J+(0>)+E‘dD ))hp x-x X +

E{((Y~"- E (rex0) + (E(T") - ¥))(A- E(@) + E@)} +

S2E0)(MY-YAX =Xty

= () Imse™>+ (N 'y - y) L+ Nel(ih + X-x X +
tow (wy=~-y)e " ~2n (Ty* ~ X)(cT(f""-ft+ E<AB"") +
_ZE(M(/\y_y,)(/\X_/\. (5)

If the assumption (4) is met, then M SE(fJ1JV reer) = *~~M S E (F 'effr),

iV VvV iv
and it should be pointed out, that {I’\ J <'— < 1.



Equation (5) could also be written as follows:

MSE(1 D2(f"") + D2(4 ) (" X - +

(6)

First three elements of above-mentioned sum (6) form the variance of
ysYN- reer estimator. It can be written by alternative expression:

The fourth element of the sum (6) is squared bias of y*™-'«»' estimator,
which is given by the equation (3).
The value of D2(y*rjw_,eir) decreases due to the increase of sample size.
The value of squared bias of synthetic regression estimator given by
2

expression can increase due

to the increase of sample size. If the increase of value of squared bias due
to the increase of sample size is higher than the decrease of value of
D2(yJIN"reer) due to the increase of sample size, then value of
M SE (F YN~reer) will increase due to the increase of sample size. It is also
possible, that the value of the MSE of synthetic regression estimator does
not change monotonically due to the increase of sample size.

3. MEAN SQUARE ERROR FOR SIMPLE RANDOM SAMPLING
WITHOUT REPLACEMENT

The accuracy of synthetic ratio estimator will be compared with the
accuracy of Horwitz-Thompson estimator of total value in the domain,

which for simple random sampling without replacement is given by equ-
ation:



Its variance is as follows (Sdrndal, Swcnsson, Wretman 1992):

S‘ . i NTN*A
S

DHfLIV— ,
TSR T s

u(r">-JV Nn

where

Y.a-Trl - iiyi-y*)1-

,yd li=i

Synthetic regression estimator given by the equation (1) for any sample
design, for simple random sampling without replacement is as follows:

ySYN-reer = N

where
Q = - XS)2>&X1 :_Lj| E (*1 - *S)(yv_ ys)v
n MeS n lies
1t
5= E*i. §s :~Ett—
ni=I
Using following expressions: Six=—— E (xf- x)2, S2 = —L-V (y - y)2
« ueO N - lien
N— " x-*)(¥Y«-N. ~*=rr1E K -")2 = ~—r ECli- ¥x2>
" — 1teS n— 1i6S

ieil

=73TE (Xi~*)(\V(- ys) let us specify above-mentioned elements of
lieS

equations (5) of M SE(fJ¥N_ee") for simple random sampling without

replacement.
First (see e.g. Bracha 1996),

N —n
M SE( Yreer) = Nz_Nn_ SL(lI —r2(x,y)) + 0(N2n~2).

Second,

D 2($) = MSE($) —(E(ft) —R)2,



where

MSEO» = M Se(~) =-Y- D\?x)-2 %';yCOV(S-xy,§}X)+
*y

+ ("lrYed(a, fO0(n~),

+0(n-2)

(7)

where (see e.g. Wywiat 2000)

D2(S?*y) = (cov.22(x,y) - covu (x,y)) + O(N “)+ 0(n 2),

D2(S?J = (cov.4(x) - cov?2(x)) + O(N *+ 0(n 2),
and (the equation is derived in the Part A.3 of the Appendix)
cov(S?xy, S2) = (cov.31(x,y) - cov.2(x)c.u (x,y) + O(N x)+ O0(n 2).
n

Third (the equation is derived in the Part A.l of the Appendix),

fyrepr = N N ~nfcOV.12(x, y) _ QOVu (X, Y)OOV21(x, y)  GOvPh (X, y)QOV3(X) N

cov ' n N—2y cov.2(x) coVv.2(x) covlj(x)

- VN N (NNM "Veova(y)[52(x) - \Kkn (x, y) - k3)r(x, y)JT1 +0{N-n"2) +0(n~l).
cov.a(x) \nN- 2 /

Fourth, Breer for simple random sampling without replacement is given
by the equation (2).

The bias of synthetic regression estimator given for any sample design
by the equation (3) for simple random sampling without replacement using
the equation (2) is as follows:

WprKk-resr) - Y d= Nd/N -N~_"£'s/co\2(y)[82(x) - AHKk2I(x,y) - k3(x)r(x,y)} )+



COVu (x,y) 1 1 (
~AXT = y)“ )+

4. SIMULATION STUDY

The comparison is based on agricultural data on 8624 farms from
Dabrowa Tarnowska region. Approximate equations of the bias and the
MSE derived in the Section 3will be used. The comparison will also be
supported by simulation study in which 500 samples will be drawn at
random. Data includes information on sowing area (in 100 square meters)

the variable of interest, and arable area (in 100 square meters), which
is auxiliary variable. The value of the correlation coefficient between these
variables equals 0.974. Bolestaw commune is treated as the domain of
interest. It includes 588 farms. Two sample sizes are considered - 86 and
259 elements, what equals 1 and 3% of population size. Let us analyse

N X
the assumptions given by equation (1). The value of Nd = 0.0682, X_ = 00922

Y
and the value - = 0.0968. The difference between first ratio and other

ratios is significant.

Let us analyse results presented in the Tab. 1 At the beginning high
relative efficiency of synthetic estimator (the ratio of the MSE of synthetic
estimator and the variance of Horwitz-Thomson estimator) must be stres-
sed, but it also should be pointed out, that it decreases due to the
increase of sample size. The reason is that the MSE of synthetic ratio
estimator includes the element, which does not depend on sample size.
The value of the MSE of synthetic regression estimator equals ca. 1% of
the variance of Horwitz-Thomson estimator for sample size of 86 elements
and 3% for sample size of 259 elements. Because of the possibility of low
efficiency of estimation, synthetic regression estimation should be used
only for small domain estimation purposes. The value of the bias has
strong influence on the accuracy of estimation. It does not exceed 5% of
real mean value and it decreases due to the increase of sample size for
analysed sample sizes. Simulation study shows that for sample size of 86
elements variance equals ca. 12% of MSE, for sample size of 259 ele-
ments - only ca. 3%.



Square root of MSE

Relative square root of MSE (in %)
Standard error

Relative standard error (in %)

Bias

Relative bias (in %)

Ratio of variance and MSE

Ratio of MSE and variance
of HT estimator

Results

Horwitz-Thompson

estimator
sample size
86 259
127 462.72 72 700.505
47.9434 27.3453
127 462.72 72 700.505
47.9434 27.3453
0 0
0 0
1 1
1 1

Synthetic ratio
estimator simulation

sample size
86 259

13 545.723 12 954.143
5.0950 4.8725
4 709.3590 2 739.6764
1.7714 1.0305

-12 700.73 -12 661.12
-4.7772 -ANbnN
0.1209 0.0447
0.0113 0.0317

Table 1

Synthetic ratio
estimator - Taylor

sample size
86 259

12 194.238 11 308.607
4.5867 4.2536
3 009.1891 1808.8175
1.1319 0.6804

-11 817.12 -11 163.01
-4.4448 -4.1988
0.0609 0.0256
0.0091 0.0242

ZseWo |

otpkz



5. CONCLUSION

Summing up, in the paper the mean square error of synthetic regression
estimator of total value in small domain is considered. The error was
presented in convenient way as the function of inter alia the bias of ratio
estimator of population mean value and the bias resulted from the fact,
that the assumption (4) is not met. The accuracy of the estimator was
compared in simulation studies with the accuracy of direct llorwitz-Thompson
estimator for simple random sampling. They confirmed known fact, that
synthetic estimator should be recommended for small samples.

APPENDIX
A.l. DERIVATIONS

In this part of the appendix an equation of cov(Yreg,ft) for simple
random sampling without replacement will be derived. Following notations
will be used:

covr(x) = * £ (*I- *)> cov.f(x) = £ (xu- x)', covr(y) =1 £ (yt- y)'
™ fed ' iefl M ietl

~ 1lten et

co\l.rly) =A Z (- yy covr>y) = — £ (xu- x)r(y, - y)k
|

cov.re(x,y) = —L X (xt- x)r(y, - y)k

™ 1iei)
Si = covz(x), S2 = cov2(y), Sxy = covn (X,Yy), Six = cov,2(x), Siy= co\.2(y),

S.xy = cov.u (x,y),

82 =- L X(x- x5)2 Siy= 1 mXCVi“ ¥x)2 S.xy=-1 z (x-- X)(yi- y)-
n o ~ieS nIies n 1j6s

For simple random sampling without replacement x = xs= £x;,
nies



Let us notice that:

cov(re, = E((fl- E(B)) = (rer- Ny)) =

= E[*(Nys + j)(Nx - Nx,) - Ny)] - E(4)Bresr.

The bias of the regression estimator of the total value in the population

denoted by Bregr= E(Yregr- Ny) for simple random sampling without
replacement is given by the equation (8).

For simple random sampling without replacement E(ft) is given by the
equation (7).

To derive an equation of cov(Yreer,fi) let us notice, that:

E[$(Nxs+ ft(Nx - Nxs)- Ny)] = E Sy

§L Nys+:J*’.</(Nx-Nxs)—Ny
=E sr+A-(S:,-5.,)- (8?,- sh)y  (Nys- Ny) +
X J.x (3'x)
S,
I o2 02 ("™xy  S*xy) + O(N m~ ) =

- ~2XTM &xy, I's) /o2 42C0M"’*>Y3) - \(,(\)%-(S\zmﬁxy’ *S) + \2 ' COVffixf Xs) +
+(SMNEMX S2A* *s) 2 N YE(S.y—SHy)($x—S2)(x —xs) +

+ N W) ~ &X)2(x - *s) + O(N m z).

Using results presented in J. Wywiat (1992, p. 138-139) it is known, that:

4 1N -n
cov(S.xy, ys) = ~1r— >cov.12(x,y),
nN —2

cov(S.xy, xs) = cov (Six,y) = 1 Acov.21(x, y),
nN —2

co\(8kxy, xsY= lN—_n"_cov.s(x).
nN-—2



According to equations derived in the Part A.2 of the Appendix we have:
E(S.xy- S xy)2(xs-x) = 0(rt~2) +

Because E(S.xy —Sxy)(Six—S2)(xs —x) and E(SIx —S$)(xs —x) are simplified
forms of E(S.xy—Sxy)2(xs —x), we have:

E(S.xy- Sxy)(Stx- S8)(xs- x) = 0(n-2)+ 0(n~
E(S.x- Sx)(xs-x) = 0(n~2)+ 0O(n~1IN~i).
Hence,

fa-N N~ n(cove»(*Jfl_ jflcav.ufcy) , cov?n(x,y)cov.3(x)\
4 nN~2\ cov.j(x) cov*j(x) “+ cov.2(x) ) +

~ (~nW -1.n/cOV2(X)[R 2(X) - IT{fcal(x, ¥) - k3(x)r(x,y)}™"

cov.n(xy) 1

n _ Ly -
cov.2(x) ﬂCOVrE/(X\)(\(COV 3i(*>)0-cov.2(x)cov.11(x,j0) +

QOv.u (x,y)
+

cov.2(x) (cov.4(x) - cov?2(x))V]j +

+0(Nmf »+0(.-) - Ng---"('co® o ~ 2" -ntertcov-"tey)

nN —2\ cov.2(x) covr2(x)

c?u (X, y)c.3(x)N
c?2(x) I+

™ ~ _2\/cov&y)IBAx) - 1N{7c2i(x.y) - /X x)r(x.y)}~ +
+~ AN [cov2(y)[Ba(x) - I{k21(x,y) - k3(x)r(x,y)}* m

| | N(cov*3BI(x »y) - cov.2(x)covAu (x,y)) +

+ A COV.4(x) — COV?2(>;))J) + O(N -n~2) + 0(n~1).



Because

'NN-n
N _ 2Vcova(y)[R2(x) - I{fce1(x,y) - /fea(x)r(x,y)}

1(cov.31(x,y)-cov.2(x)cov.n (x,}o) +
ncov?2(x)

cov.uix.y)
+ (cov.4(x) - cov?2(x))™ = O(N m 2
cov

finally we have:

furor by NN-n(co\.n(x,y) ,covML(*y)cov.2l(*)y) , coviu(x,y)cov.3(x)\ ,
“V(y covii(x) + 5 ® j

- C%J,J&f Qn—N _9'8>V2(yyiB,(X) - 1H{ku(xy) - k,(X)r(X,y)]J\ +

+ O(N-n-2)+ 0(n~1).

A.2. ADDITIONAL DERIVATIONS - PART ONE

In this part of the appendix an equation of E(S.X1—S'X)2(xs —x) for
simple random sampling without replacement will be derived. Following
derivations are based on the assumption, that x =y = 0, what does not
have influence on the generality of results:

SL) (Xj x) = E(5%Xg  2S.x5.xyxs -f SYX) =

= E(Sixyx s) —2S.xyE (5" %K 5).

Then, using results presented in J. Wywiat (1992), p. 138-139, we receive

E(S.Xy-S . 4)Axs-x) = E(Sixxs) - - 2co\.n (x,y)co\.2I(x,y). (8)
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Let us notice, that

\' (N Y i
E($»XXs) = A _ JI2Ei Yjxdlai—nx$ysJ xs= " V(. Ew AVA M| xfli)+
1=1

I6AX HCH +?(W CW

All of three elements of above-mentioned sum will be derived separately

n )\
usin followin equations: E(a,)=--> E(a,a,) = —— — —»
9 g q (a)) N (a,a,) N(N-1)
c/ Y n(un-1)(n-2) n(n- 1)(n-2)(n-3)
(aArk) - KA * (atajaka,) - W u _ _2)(N _ 3)° Some
simple transformations will be omitted.
First,
an? 2 EH E (E “ A ovRi(*.y)cov.u (x,30 + 0(n~2).
Second,
2> -2)2E(/W ) (J>a) - (1 ya) =0(n-»).
Third,

N~ E1,38(1/M)r=o( ">

After summing up the three elements derived above we receive:
E(S}xyxs) = ~ - ~MJcov.2i(x,y)cov.u (x,y) + 0 (n~2).
Using the equation (8) finally we received:
. 2N —n . .
E(StXYy Swxy) ixs x) —E(X»X/X5) Niv covji(x)cov«2i(x,y) —
IV —2z

rz 2 2tf-
= (n~ N ]Jcov.2i(x,y)covMi(x,y) ntf ;covn (x)cov.21(x,y) + 0 (n“2) = 0(n 2.



A 3. ADDITIONAL DERIVATIONS - PART IWO

In Part A.2 of the appendix an equation of cov(S.xy, Sixy) for simple
random sampling without replacement will he derived. Following derivations
are based on the assumption, that x =y = 0, what does not have influence
on the generality of results.

cov&xyJK) = E(S.xy- S.xy)(Six- SIx) = E(S.xy,$.x) - S.,ySIx (9)

Let us notice, that:

(nZ"i)IL( ZW i- I''xfat- nx"J =

(n-1)

- n(,ixaX K AX,im)+H zxaN i ml «
All of four elements of above-mentioned sum will be derived sepa-
rately using following equations: E(af) = E(a,a;) = m ~ E(a™ak)

n(n —1)(n —2) p. ._ n(n-1D(n-2)(n- 3
N(N - (N - 2) (aaJa*a} - JV(N- 1)(N- 2)(N- 3"
transformations will be omitted:

Some simple

First,
(n E(ZL Z Tov.3i(x,y) + 7L+ ~cov.n (x,y)cov.2(x) +
+0(n-2)+0(N-12).
Second,
o W iY Z *ia] = -~cov.u(x,y)cov.2(x) + 0(n"2)+ 0(iV L.
® - )2“Vri
Third,
n \/n
E 1 xfai) lya)= coyun(xy)coy.2(x)+0(n_2)+ 0A °).

=1 Ni=l



Fourth,

After summing up the four elements derived above we receive:
E($.%5.xX) = 1cov.31(x,y) + §1 - "\-0V.n (x,y)cOV.2(x) + O(n 2) + 0(JV_1).
n n
Using the equation (9) finally we received:

cov($.xy,$.x) = r’:(cov.s}(x,y) -cov.2(x)cov.n (x,y)) -FO(N _1)--0(n~2).
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Tomasz Zadto

O BLEDZIE SREDNIOKWADRATOWYM
SYNTETYCZNEGO ESTYMATORA REGRESYJNEGO

W opracowaniu rozwaza sie problem estymacji wartosci globalnej w matym obszarze. Ze
wzgledu na malg liczbe (lub brak) elementéw populacji z rozwazanej domeny, w proébie
wykorzystywane sg informacje o wszystkich elementach populacji. Zaprezentowany zostaje
syntetyczny estymator regresyjny. Wyprowadzono tez ogdlne wzory na btad Sredniokwadratowy
i obcigzenie tego estymatora dla dowolnego planu losowania. Oméwiony zostaje problem
zatozen dotyczacych struktury populacji i domeny z punktu widzenia redukcji btedu $rednio-
kwadratowego i obcigzenia rozwazanego estymatora. Zaprezentowane jest znaczenie wptywu



obcigzenia na precyzje estymacji. Pokazana zostaje mozliwo$¢ wzrostu wartoéci btedu $rednio-
kwadratowego i obcigzenia wraz ze wzrostem liczebnosci préby. Wyprowadzone zostaja
przyblizone wzory na btad $redniokwadratowy i obcigzenie estymatora dla préby prostej
losowanej bezzwrotnie. Poréwnano réwniez precyzje syntetycznego estymatora regresyjnego
(warto$ci uzyskane na podstawie wzoréw przyblizonych oraz symulacji) z precyzjg bezposred-
niego estymatora Horwitza Thompsona. Porédwnanie bazuje na danych ze spisu rolnego dla
powiatu Dabrowa Tarnowska. Populacja skiadata sie z 8624 gospodarstw rolnych i obe-
jmowata rozwazany maly obszar gminy Bolestaw, na ktérej terenie znajduje sie 588 gos-
podarstw rolnych.



