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ESTIMATION OF POPULATION AVERAGES ON THE BASIS
OF A VECTOR OF CLUSTER MEANS**

Abstract. The estimation of a vector of mean values is being considered. The vector
estimator consists of simple cluster sample means. It is assumod that a population of a fixed
size is divided into mutually disjoint clusters each of the same size. The variance-covariance
matrix of the vector estimator is derived. It is a function of a homogeneity matrix of
multidimensional variable which describes within-cluster spread of the multidimensional
variable under research. The accuracy of estimation is measured by means of standard
deviations of particular sample cluster means as well as by means of the trace or the
determinant or the maximal eigenvalue of the variance-covariance matrix of the vector
estimator. The accuracy of the vector of simple sample cluster means is compared with the
accuracy of the vector of the simple sample means. The accuracy of the vector of simple
sample cluster means increases when the degree of within-cluster spread of the distribution
of a multidimensional variable increases. Hence, the population should be divided into such
clusters that the within-cluster spread is as large as possible.

Key words: cluster sample, vector estimation, clustering methods, generalised variance
relative efficiency, homogeneity coefficient of multidimensional variable, eigenvalue of variance-
covariance matrix.

1. THE BASIC PROPERTIES OF THE VECTOR OF CLUSTER MEANS

A fixed population of the size N is denoted by [I1. It is convenient to treat
the population as a subset of the natural numbers: Q = {1, 2, Nj. Let us
assume that the population Q is divided into G such mutually disjoint clusters

c

(P= » G)that 13 Qp= Q. If each cluster is of the same size denoted by

. _ p=i
M, the population O is of the size N = GM. Let S be the cluster sample of the
size g. The random sample S is drawn according to the following design:
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A k-th (k =1, N) outcome of an i-th (i= 1, m) variable is denoted
by yki. The sum of observations of an i-th variable in a p-th clustcr is as
follows:

Zip Yh -
kell.

The mean value of an i-th variable in a p-th cluster is:

y =M Zpl

The mean value of an i-th variable per cluster is:

zi=r | zpi-
G P=

P=1

The population mean of an i-th variable takes the following form:

1 e
VT =it
The variance-covariance matrix is denoted by: C = [cov(y; yA], where:

1 G
COv (yifyj) = —— - £ E (Yun~ Ya(¥Ybl - Yj)-

N P—1keiip

The wvariance-covariance matrix of cluster sums is denoted by:
C: = [cov(z, Z)], where:

1 0
CoV(z, Zj) = - — - £ (Zpi- Zi)(zpi- Z K).

u — 1 P=1

The estimator of the vector y = [y* ym] is defined as the vector

yes = [yies, mm Ymas], where:
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The vector yieS is the unbiased estimator of the mean vector y.

The covariance of the estimators y”, yJS (i#/'= 1, ... m) can be
derived similarly as variance of yigS (i = 1. m), see eg. W. G. Co-
chran (1963) or C. E. Sédrndal, B. Swenson, J Wretman
(1992).

G -
COv(yiiS) y jeS) = — -92 cov(z, zj) 2

The variancc-covariance matrix of the ygS can be written down in the
following way:

V(ys.P,)-|"C (2) ©))

where: C (z) = [cov(z(, zj\.
The unbiased estimator of the covariance is obtained through substitution
of the following statistic for the parameter cov(z( z}):

OOVs (zi; Zj) = ——---- X (Zpi-Z ()(zw-Z]j).
9 1lpes

2. HOMOGENEITY COEFFICIENT OF MULTIDIMENSIONAL VARIABLE

Let Cb = [coy4(y;, yO] be the between-cluster matrix of the variances and
covariances, where:

1 c

covi(Vvi,y,) =r— 7z (yip- yi)(yip - vi)-
17 1p=i

The within-cluster matrix of the variances and covariances is denoted by
Cw= [cov”™.,yad where:

1

C
covwey,, yj) = ———;) £IkE Cy* - yip)(y» - yjpm
p=Ilke a.



Similarly to the one dimensional case (sec e.g. Cochran 1963, p. 243)
the variance-covariance matrix C can be decomposed in the following way:

(N-1)C = (G- 1)MCb+ (N —G)CW O]
The matrix C(z) can be rewritten as follows:
C(z) = M2Ch (5)

This expression and the equation (4) lead to the following results:

Cg>=G—4 ((N" 1)C~{N~ G)CJ
C(z)=Mc(|+’\G’\_é1) (8)

where:
A=1—C-1CW @)

In the case of an one-dimensional variable yt, when C reduces to the
variance vary; and Cw is the within-cluster variance varw the matrix
A reduces to the homogeneity coefficient (see Sdrndal, Swenson,
Wretman 1992, p. 130):

= 1 8>
where:
var =- X | Yn-yD2, VYi=Trt | vyia 9
(v ID:“e“'( yt Ap:1*6n,y )
1 e j
varwcy,) = E(ﬁ_—i) p>§! I (yik-yip2, VYip= K(/I ZY (10)

Then, the matrix A can be treated as generalization of the homogeneity
coefficient & That is why the matrix A can be named as homogeneity
matrix of multidimensional variable.



Theorem 1. If the variance-covariance matrix C is non-singular then the

eigenvalues A (i = 1, m) of the matrix A fulfill the following inequalities:
© _1<Af<l for each i=1 m
N a =1,
N —G (1D

Proof. The characteristic equation for the matrix A can be transformed
as follows:

IA—AII=0 (12
[ —C” 1CWAI| = o
|C_1Cw-klI]| =0 (13)

where kK = (1 —A). Since the matrix C_1CW is positive semi-definite its
eigenvalues k,~0 for each i = 1, m. Hence, the eigenvalues of the matrix
A are: A,< 1 for each i= 1, m.

Since the matrix Cb is positive semi-definite the equation (4) leads to
the matrix

Aj = (N —1)C —(N —G)CW

which is positive semi-definite, too. Because the matrix C is positively
defined the following matrix is positive semi-definite:

1, . N —1
A, = ¢ %

—_1_C 1¢-
N —G N-G

After simple algebraic transformations we have:

o (14)
"

Let us do the following transformations:

IA—A1 = o,

|A2-el| =0 (15)



where:

Since the matrix /12 is positive semi-definite the eigenvalue ¢, > 0 for

each i= 1, m. Hence, on the basis of the expression (16) we have:
TN —G for i= 1, ..., m. This completes the proof.

We can say that the within-clustcr spread of observations of a multi-
dimensional variable is less than their population spread if the matrix A is
positive definite. When A is negative definite, then we say that the population
spread of values of a multidimensional variable is less than the within-cluster
spread.

3. ACCURACY OF A CLUSTER SAMPLE MEAN VECTOR
IN RELATION TO SIMPLE SAMPLE MEAN VECTOR

Let ys be the vector of the mean from the simple random sample of
the size n, selected without replacement from a population of the size N.
Its variance-covariance matrix is of the following form:

17)

where:

On the basis of the equations (3) and (6) we have:

Under the assumption that GM = N and gM = n:



Hence:

V(ys,P.) - V(y,,>)= N~ N -_°CJ (20)

or

V(ys.P,)-V(y,sP)=V d-TI'C-C.) (20

This leads to the following property:

Theorem 2. If the matrix (C -C w) is non-positive definite (non-negative
definite) then the strategy V(y(S,Ps) is not worse (not better) than the
strategy V(ys, Ps). Particularly, if the matrix C is nonsingular and the A is
non-positive definite (non-negative definite) then the strategy V(yiS, Pg) is
not worse (not better) than the strategy V(yS,PYS).

Hence, The strategy V(ygS,Pe) is not worst than the strategy V(yS,PS),
if the within-cluster spread of a multidimensional variable represented by
the matrix Cwi s larger than its population spread represented by the matrix C.

Let us denote the variance of a strategy, the determinant, the trace and
the maximal eigenvalue of a variance-covariance matrix of a vector strategy
by D2(., ), det(., ), tr(., .) and #1(.,, .), respectively. The relative efficiency
coefficients are defined as follows:

e’ = =1+|zf ap- * l..m 2>

where O(yt) expresses the formulas (8- 10).
- de« V» .~ o= A (23)
det V(ys,Ps) -

e _trV(yeSPe) N -G

where:

<5= 7<5(y,)a,
I=1



var (y,)

Z var(yf)
1=1

(25)
83 SAAbP3)

Theorem 3. If the matrix C is positive definite and matrix A is non-positive
(non-negative) definite, then ek™ 1for t= 1,2, 3 and e0i® 1fori= 1, .. m
Particularly, if the matrix A is negative (positive) definite, ek< 1 for
k= 1,2,3 and eo<<1 for i= 1, m and eoj< | for at least one index
7= 1, .., m

C. R. Rao (1982, p. 89), showed: if B is positive definite and (A-B)
is non-negative definite then dct(A) > dct(B). This and the expression (7)
lead to inequality < 1. The properties of the trace of a sum of matrixes
lead to the inequality e2< 1. If the matrix A is non-positive definite, the
matrix (C —Cw) is non-positive definite, too. Let Aj(A) be the maximal
eigenvalue of a matrix A. Hence:

A,(C) = max{aTCa},
«Re-i

Al(CwW=max{p TCwP}-

If (C —Cw is non-negative defined then for all non-zero vectors y:
7tCy - YTCWs* 0 (26)
Hence:
aTCa - aTCwat = AXC) - aTCwa ™ 0,
PTICp-pTCJ = RTCR-ALCwW>0,
Aj(C) —Aj(Cw) > pTCp —Aj(CwW "~ 0,
ANOMNANCI.
This leads to inequality: e3<|. The inequality (26) let us derive the

inequalities eoi™ 1>1= 1> m when we assume that the elements oi the
vector y are equal to zero except the i-th element equal to one.



The strategy (yes,pe) can be better than the strategy (ys.p9 if the
matrix (C - CJ is negative definite. It means that the within-cluster spread
of values of the multidimensional variable (under research) should be bigger
than the population spread of observations of those variables.
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ESTYMACJA WARTOSCI PRZECIETNYCH W POPULACIJI
NA PODSTAWIE WEKTORA SREDNICH Z PROBY KRUPOWEJ

Zaktada sie, ze skonczona i ustalona populacja jest podzielona na réwnoliczne i roztgczne
grupy. Na podstawie prostej proby grupowej jest wyznaczany wektor $rednich, ktéry daje
oceny wektora przecietnych w populacji. Wyprowadzono macierz wariancji i kowariancji
wektora wartosci $rednich z préby grupowej. Jest ona zalezna od macierzy wewnatrzgrupowej
jednorodnosci rozktadu wielowymiarowej zmiennej. Precyzja estymacji jest oceniana za pomoca
wariancji poszczegélnych $rednich z proéby grupowej, $ladu, wyznacznika lub maksymalnej
wartoéci whasnej macierzy wariancji i kowariancji. Precyzja wektora $rednich z proby grupowej
jest poréwnywana z precyzja wektora $redniej z proby prostej. Okazuje sie, ze wektor $rednich
z proby grupowej jest precyzyjniejszy od wektora przecietnych z préby prostej, gdy stopien
wewnatrzgupowego zrdéznicowania warto$ci zmiennych jest dostatecznie duzy.



