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T H E  E S T IM A T E  O F  P O W E R  O F RA N D O M  T E S T S  BA SED  ON
L E N G H T  O F RUNS

Abstract. Tests based on ienght o f  runs are used both in statistical inference and statistical 
quality assurance. The paper presents power of three tests based on:

-  maximum run lenght on one side o f  the medium,
-  smaller from the maximum run length above and beneath the median,
-  bigger from maximum run lenght above and beneath the median.
Key words: run tests, number and run length distributions, power o f tests based on run lengh.

1. INTRODUCTION

The analysis o f statistical tests properties from applicational point o f 
view usually involves examining their power or resistance.

T he problem  o f non-param etric tests power exam ination is relatively 
difficult because o f the lack of general theory for this branch o f science.

F or the last 25 years non-param etric tests power rarely has been tested 
analytically but m ostly by m eans of num erical-sim ulation m ethods (M onte 
Carlo) both mentioned m ethods were used. Generally, we arbitrarily formulate 
a list o f som e alternative hypotheses (it usually consists o f the m ost 
com m on hypotheses in practice o f statistical research). Then, we calculate 
the frequencies o f rejection o f the null hypothesis on the ground of 
a number generated samples, which fulfil the assumptions given by alternative 
hypotheses. These frequencies are the empirical power o f the given test.

The paper presents results referring to  three random ness tests based on:
-  m axim um  run length on one side of the m edian,
-  smaller from the m axim um  run length above and beneath the m edian,
-  bigger from m axim um  run length above and beneath the m edian.
T he aim o f this paper is to  form ulate some conclusions abou t the power

of random ness tests based on run length. T he conclusions will be helpful
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in choosing run test in practical applications. Form ulated conclusions arc 
presented for the case o f M arkov stationary chain o f  two states.

2. PROBLEM  FORMULATION

Cz. D o m a ń s k i  (1986) presented some conclusions referring to  three 
tests to verify the hypothesis saying that the sequence o f consequtive 
observations in sam ple is independent. They arc based on: 

m axim um  run length on one side o f the m edian (S^), 
smaller from m axim um  run length above and beneath o f the m e­

dian (SD),
bigger from maximum run length above and beneath o f the m edian (S0).

T o m ake the practical application of these tests possible there were 
given the tables o f critical values for series tests SA, SD, S G and an attem pt 
to assess association between considered statistics was m ade.

The aim o f this paper is to form ulate some conclusions referring to the 
power o f  m ost often used run tests. We hope these conclusions will be 
helpful in choosing run tests in practical applications. We are confined to 
the case o f M arkov stationary  chain o f two states traditionally  m arked by 
A and В and the transition  m atrix.
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Let PnB be the d istribution o f this chain for each

0 6  0  =  { { 9 o, 9 i ) : 0 < 9 o <  1 , 0 < í 1 <  l }

and let =  {A, B}n be the set o f all n-element sequences m ade o f elements 
A, B. We will consider the probability space

M„.fl =  (П„, 2 ° \  Pn„) for 06  0 .

Conclusions form ulated in the final part o f this paper are based on the 
power o f tests num erically determ ined for n =  1, 2, ..., 100 and a few dozen 
pairs chosen from  the set 0 .  Form ulating the m ost suitable algorithm  for 
these calculations was the necessary stage o f this research.

Until now, m ost often we have been considering the run elements above 
and beneath the m edian i.e. the case when the probability o f all kind of 
elements is 0.5, if we follow the Batem an’s ( B a t e m a n  1948) conclusions



who showed that in this case the power of independence test is the biggest. 
The results presented in article refer to  M arkov chain with arb itra ry  
stationary probabilities 0 < р ^ < 1 .

C om binatorial form ulas on probabilities connected with run distribution 
arc very unsuitable for numerical calculations. M ore effective is using 
recurrent form ulas, particularly when calculations arc m ade for conscqutive 
values o f n (sample size).

Recurrent form ulas referring to length run distribution in the case 
when the consequtive observations in sample are generated by the M ar­
kov stationary chain o f  two states were presented in D om anski’s paper 
( D o m a ń s k i  1986). Let us observe that it is fundam ental to com pare 
the power o f tests based on run length with the power o f tests including 
run num ber. Therefore, we give recurrent formulas to  calculate the func­
tion o f total num ber and scries length probability function. In studies 
that have been m ade so far, only form ulas for one-dim ensional d is t­
ributions were used.

3. RECURRENT FORM ULA FOR THREE-DIM ENSIONAL DISTRIBUTION OF RUNS

Let us assign to  every sequence

a) =  (x j ,  x 2, ..., x n) e Q n

the following num bers:
N a(u>) -  num ber o f  A  elements in sequence w,
L a(w ) -  num ber o f  run m ade o f A  elements,
Ц ш ) -  to tal num ber o f runs,

-  m axim um  run length composed o f A elements (respec­
tively B),

К А(ш), K B(aj) -  num ber o f elements A (respectively B) located at the 
end o f sequence ш,

Z A(w), Z B(w) -  m axim um  run length com posed of elements A  (respec­
tively B) w ithout taking into consideration the last run.

Let us assume that sequences w e i l ,  are the realizations o f M arkov 
stationary chain o f  transition  m atrix

where 0 < p AB, pBA< 1.
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T herefore stationary  probabilities arc given by the formula:

p = p ( X j  =  A)  -  — i?AB -  for j =  1, 2, n 
A J P a b  +  P ba

P B — P (X j  =  ß ) =  for ; = l , 2 , . . . , n
Рлл +  P ba

T aking into account these assum ptions, the probability d istribution on 
the set can be given by the formula:

P (w) = ----- I ------ p 7 a L a P a Í P Í ä LaPbb' ,a~ 1 ~ La (3 )
P a b  +  P ba

where to  simplify things, it was assumed nA =  N A(a>), I = Ц ш ), lA = L A(u)). 
In fact,

Р(ш) =  Р (Х 1 = х 1)Р (Х 2 =  х 2|Лг1 =  х 1) ... P(X„ =  x n\X „ - i  = x K- i )  (4) 

and at the same time

Í P a i f  x i =  

if

Let us observe tha t lA is the num ber of these A  elements, which create 
new run i.e. they follow В (perhaps without the first element). That is why 
on the right side (4) there is lA factor equal to  pAB (including also factor
(5) in a shape (2) when x , =  A). The num ber o f A elements not creating 
new run and at the sam e time following A,  am ounts (nA — lA), so there is 
the same num ber o f factors pAA on the right side (4). Similarly, we show 
that num bers o f factors pBB and pBA equal respectively (nH- l B) and l„ 
(including also factor (5) in form ula (2), if x l = B). Both if x , =  A,  and

if x, =  ß ,  on the right side occurs one factor
1 Pa b  +  P b a

Let us consider, for fixed n, total three-dimensional distribution (L, S^, SB) 
o f num ber o f run L, m axim um  length o f run consisting o f A elements and 
m axim um  length o f run  consisting of В elements.

Let us assign

Л /(м ,/, s, t, u) =  c a rd { o je ii„ : / = /(w), s = Z A((o), t = S B(w), u = K A(a>)}

the following form ulas are true:



M (n, /, s, t, u) =

'M(n — 1, /, s, t, и -  1) for u >  1

M (n  — 1, / — 1, s, t, 0) for u = l  (7)
f- 1 Г
£  M(n, l, v, s, i) +  Z  M (n> l> s. w) f01" u = 1

и -  0 м>= 1

The first two form ulas are obvious. We get them by adding n-th element 
A to (n — 1) element sequence. In case и =  0, transform ing element A to

R and inversely, we get M(n, I, s, t, u) = /, v,s, w), where the summation
V, W

is over these pairs (v, w) for which max{v, w} =  t.
Initial conditions for form ula (7) are as follows:

M ( 1, l,s, t, u)
1 for / =  и =  1, s = t =  0
0 for the other (8)

Cz. D o m a ń s k i  (1986) proved:

Theorem 1. T he to tal distribution o f variables (L, SA, SB) specified on 
probability space M n B takes the following form:

P(L = I, SA = s, SB = t) = Q0(n, I, s, t) +  Qyin, I, t,s) 

where for n =  0.1

(9)

r -  1

i> =  0

+  £  Q ( n - w , l - \ , s ,  w)<?„(l
w — 1

for / =  s =  t =  0

for the other

with initial conditions for /j =  0.1.
F rom  T heorem  1 follow the curren t form ulas for one-dim ensional 

distribution probabilities L A, L B, L c .



Theorem 2. Variable distribution L A specified on space M„,„ is given by 
the form ula

P(S , =  s) =  Qá(n, ä) +  ß i(n ,  .v)

Q iin ,  s) = "X Q Í(n  -  v, s)q0(l -  í , ) ' " 1 (10)
tf= 1

Qí(n, s) =  X Qo(n-s, v)íi(l - q 0) l ~ l + £  6 o ( n - w.s)<?iO “ ЗоГ '
»=0 W= 1

with initial conditions

Q á(0 ,0) =  Q3(0, 0) =
Чо 4í

Transform ing A  in to  В and 0 into 1, we get form ula for distribution  S B.

Theorem 3. D istribution o f variable SG specified on M„t0 is given by 
the recurrent form ula

P(SG = s) =  QG0(n, s) +  Q í(n, s) (11)

where for h =  0.1

Qh(n,s) =  X  Q ?_ * (n -s ,v )q * (l -< ? i-* ) ,_ I  +
v=0

+  t  Q i - k ( n ~ w , s ) q k( l - i i - * ) " _1
W= 1

with initial conditions

ßg(o,o) = ß?(o, o) = — [ —
Я o +  9 i

Let us observe that distribution SD can be assigned as follows

P(SD <  s) =  P(S^ <  s) +  P(SB <  s) -  P (S G <  5).

Theorem 4. D istribution of variable L specified on M„,fl is given by 
recurrent form ula



P ( L = l )  =  QŠ(n,l) +  e í(n ,l)  (12)

where for h = 0.1

Qk(n,  1) =  Q${n -  1, 1 )(1  -  q x _*) +  6 í - * ( n  -  1, s  -  l ) q h 

with initial conditions

ß ii(0 ,0) =  ß i(0 , 0 ) = — J—
Ч0 +  Ч1

4. ESTIM ATION OF THE POWER OF RUN TESTS

T ak in g  in to  acco u n t recu rren t form ulas the pow er o f  test fo r 
n =  1, 2, 1000 and some pairs 0 =* (q0, q ^ e G  was assigned.

Because o f better in terpretation o f param eters

P  =  P a  =  „  . V  an d  P =  1 -  9 o -  9 t 
Ho » Чх

adequately expressing M arkov chain stationary probability and its au toco r­
relation coefficient, these pairs (q0, q t ), were chosen for which hypothesis 
revision H o : p =  0 is as follows:

-  if SA < s A — 1, hypothesis H 0 is accepted,
-  if SA ^  sA, hypothesis H 0 is rejected (for the alternative H '{ : p >  0),
-  if SA =  s f  -  1, hypothesis H0 is accepted with probability r^. 
Randomized tests based on statistics SB, SD, Sc ware analogously assigned. 
The critical value for test based on run number is defined by the formula:

S„ =  m ax { a : FL(s) <  a},

where:

F l(s) = P(Sl ^ s)- 

adequately random ized probability  equals:



For statistics S, we took left-sided, and for o ther statistics right-sided
critical regions.

Let us take for fixed n, p, significance level a and p =  0,

FA(s) = P(SA ^ s )  for s =  0 , 1 , . . .

T he critical value o f the test based on statistics will be 

s i  = m in {s: F a(s) ^  1 -  a}.

This value corresponds to randomized probability

,  F M - ( l - a )  

r‘ F A( S ' ) - F A(sa- \ )

For fixed n, p, and significance level a and simple alternative hypothesis 
of type H t : p  =  p i given results allow (at least approxim ately) determ ine 
the power o f  independence tests (which verify hypothesis H 0 : p =  0) based 
on statistics S A, S„, SD, S G, L, and, at the same time, to  choose the 
strongest o f them.

None o f considered test is stronger than other tests, taking into account 
general alternative hypothesis H t : p > 0 .  It is obvious tha t we m ust be 
careful with that generalizations based on numerical results but even on 
this stage we can form ulate the following conclusions which are useful in 
choosing run test in applications (see Tab. 1, 2).

1. T he test based on statistics SA is stronger than the test based on 
statistics SB for p >  0.5 except cases of strong asymmetry (p >  0.6) and very 
strong au tocorrelation (p >  0.7).

2. The test S c proved to  be stronger than  the tests S A and SB except 
cases of big asym m etry (p > 0.6) and very strong au tocorrelation  (p >  0.7). 
This test is also stronger than  tests SD, but only for p close to  0.5 and 
not very strong au tocorrelation  in relatively small sample size.

3. W ith the increase o f p differences between the power o f tests S A and 
SG and SB and SD decrease very fast (except cases of very small n (n < 15). 
These differences are significant only in case o f  strong au tocorrelation 
(p >  0.5).

The test SL proved to be stronger than tests S D and in every 
considered case. It is also stronger than tests SD and S B except cases o f  
strong asym m etry (p >  0.7) and not very strong autocorrelation (p < 0 .5 )  
for not very num erous samples (n <  80).

The power of the tests examined is the biggest for p = 0.5.



Power o f  run tests for p =  0.5, p =  0.3, 0.5, 0.7, 0.9, a =  0.05 (in %o)

n

p = 0 .3 p = 0 . 5 p =  0.7 p = 0 .9

tests tests tests tests

S .4 " SB S G S D —  S B SG S D * л  = s B S D s L S G % s L

5 118 143 59 143 190 253 56 253 289 418 43 418 420 625 18 652
10 145 179 120 215 243 344 175 430 360 579 202 712 467 862 124 956
15 165 209 159 291 292 419 261 598 436 701 335 888 524 954 234 997
20 184 233 197 362 336 480 350 723 505 780 468 959 583 980 350 1 000
25 197 249 217 427 371 519 397 812 560 827 543 986 634 991 436 1 000
30 212 267 235 487 406 562 443 875 613 869 614 995 682 996 517 1 000
40 232 292 289 599 455 618 550 950 686 914 741 1 000 756 999 654 1 000
50 250 313 304 683 500 665 588 980 746 944 796 1 000 814 1 000 741 1 000
60 268 337 333 753 542 711 646 992 795 966 853 1 000 859 1 000 812 1 000
80 290 360 385 855 595 756 730 999 853 981 917 1 000 916 1 000 899 1 000

100 313 387 409 918 644 802 773 1000 898 991 942 1 000 950 1 000 944 1 000

S o u r c e :  own calculations.



Power o f run tests for p  =  0.7, p =  0.6, 0.7, 0.8, 0.9, a =  0.05 (in %o)

p =  0.6 p =  0.7 p = 0 . 8 p = 0 .9

Sx sB Sc S d sL s. S b S g SD sL S b sc S d sL SB sc S d sL
5 231 270 307 45 307 143 241 175 51 175 95 194 105 67 105 67 134 70 81 70

10 351 356 507 203 669 353 338 406 211 502 213 296 221 237 221 98 193 99 176 99
15 414 436 603 343 870 386 415 443 366 688 373 359 379 331 471 143 246 143 241 143
20 482 507 679 458 947 432 482 497 448 825 390 423 397 411 550 207 299 208 298 208
25 535 574 732 553 978 485 545 551 523 920 416 483 422 478 728 302 349 302 348 302
30 584 615 775 606 992 532 602 594 590 961 447 537 453 535 767 391 395 391 395 439
40 659 692 835 718 999 605 678 663 685 990 517 631 522 631 897 404 479 404 479 495
50 716 756 873 785 1 000 664 734 717 737 998 576 689 581 689 960 428 552 428 552 657
60 763 804 903 826 1 000 711 782 759 784 1 000 623 733 626 733 982 458 612 458 612 707
80 828 861 938 894 1 000 781 856 820 856 1 000 696 806 696 806 997 526 682 526 682 861

100 875 984 961 929 1 000 830 906 861 906 1 000 751 861 753 861 1 000 588 741 588 741 920

S o u r c e :  own calculations.
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C ze sla w  D o m a ń sk i

OCENA M OCY TESTÓW  LOSOW OŚCI OPARTYCH NA DŁUGOŚCI SERII

Testy oparte na długości serii stosowane są zarówno we wnioskowaniu statystycznym, jak 
również w statystycznej, kontroli jakości.

W pracy przedstawiono moc trzech testów opartych na:
-  maksymalnej długości serii z jednej strony mediany,
-  mniejszej z maksymalnych długości serii powyżej i poniżej mediany,
-  większej z maksymalnych długości serii powyżej i poniżej mediany.


