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ON THE SYMMETRIC CONTINUITY

S. Marcus proved in [4] that, for any set Ee C]J, there
exists a function f- R @ R for which SC* m E where SC* denotes the
set of all points of symmetric continuity of the function f. Next, C. L
Belna in [1] that, for any function f- R ® R, the set ™ n
is of interior measure zero, where [D. denotes the set of points of dis-
continuity of the function f.

In the present paper, some necessary conditions (Theorem 2)
and sufficient ones (Theorem 3) are given in order that a given
set be the set of points of symmetric continuity for some func-
tion f: R ¢R. Moreover, from Theorem 4 and our example it fol-
lows that there exists a set which 1is not the set of all points
of symmetric continuity for any function f: R »R. The example is,
at the same time, an example of a function f: R *R for which
SCF is a non-measurable set. The existence of such a function
was proved, with the continuum hypothesis applied, by P. Erdos
in [21.

DEFINITION 1. The symmetric oscillation of a function at a
point is given by

Sosc f(x0) = jLY, If<x0 + ) - f(xo - h) I
The following theorem is self-evident:
THEOREM 1. If a set E is such that E = SCF for some f: R »R
then E= fl Ep where Ep = {xe R: Sogc f(X) < ¢(}-
pEN

DEFINITION 2. We say that a set A 1is a weak section of sym-



metry if there exists a decreasing sequence of sets {AF}BCN such
that

m * - i, v

(i) x0 6 Ap)=> Ui >0 VIihle (O,b 6 Vr <p 30e {0,1}
[(Cxo + h)e Ar+0><= ((xo - h) 6 Ar+0)]}-

DEFINITION 3. IT there exists a decreasing sequence of sets

@an Qe Ap) {36 >0 Vinle O, D Vr<p [((Q +h
e Ary= ((Q - h) e AnD,

then the set A is said to be a section of symmetry.

THEOREM 2. If f: R &R, then the set E = SC" is a weak sec-
tion of symmetry.

Proof. Using theorem 1, it 1is enough to prove that the

sequence of sets (Ek}keN where Ek = (xe R: SQsc f(X) <"} has
property (ii) Tfrom Definition 2, since the monotonicity of the
sequence and property (i) are obvious. From the monotoni-
city of the sequence {E*} and the negation of condition (ii)
we have that there exist a point xQ and a number Jj e N such

that xQ e Ej and, for any number 6 > 0, there exists h, |h] e
e (0, 6), and an index k < j such that

Xo + he Ek+1 A x0 “ h i Ek @

From (1) and Definition 1 and the way the sets E. are defined we
have

@)

©)

Since v i 1w una



So, there exists 62> 0 such that

[fFCxc +u) - FXQ - W] <-y for ue O, i) (©)

61

Let now &2 = Then there exists he (0, «2) such that,

for k, conditions () and (@) are satisfied. So, there exists
t such that |[tQ]e (O, f2> and

fxo + h+ V = f(xo + h - to’l < dc+T ®)

IfG0 -h + 1Q) - F(xQ - h - Q)] >F =7 O
Note that |h+ Qs @O, ) and |h - tQ]le (O, fij). Conse
quently, from () we have

If50+h+V “roo - he v [ L (®)
and

ITCQ + h - Q) - F(xQ - h + Q)] < ®

From conditions (6), (), ® and (@ we get

| =-£ < |f(x, - h * t0, f(XO_h_VI —

» IFGQ - h + Q) fxo +h -8, +
f(xo +h+ to») +
+ (FGQ +h + Q) fxo ~h-v>| <

10)

Thus we have

8 . 1< 11
9 9k 9~ gktl a

which is impossible because of the fact that k < j.
Consequently, the sequence {Ek}keN satisfies condition (ii)

from Definition 2. This ends the proof of the theorem.
If a set E ¢ R is a section of symmetry, let us denote



E={xeR VpcN 36x >0 V]hl e O, «x> Vr <p
[(x + h) € Er)«m ((X - h) 6 Er)}r.
REMARK. If E 1is a dense set and a section of symmetry, then
the interior measure of the set B \ E is equal to zero.
Proof. Let the sequence {Bp} N satisfy the conditions
of Definition 3. Put

0 for X e E
60 =

p for xeV V r

Then E = scf (see the proof of Theorem 3) and R \ E c Df where
Df denotes the set of all points of discontinuity of the func-
tion f.

Making use of the result ofC.L. Belna in[l] stating
that the set SC* n D has the interior measure equal to zero
and from the fact that ENXE=En R\E) e £n Df, we obtain
that the set E \ E has the interior measure equal to zero.

THEOREM 3. If E 1is a section of symmetry and the set
E\E e FO, then there exists a function f: R »R such that E =
= SCF.

P roof. Let the sequence IiEp}pEN satisfy the conditions
of Definition 3 and E1 = R. Then

» = EU (Ep\ V I|. tEp\ Epn>n (,s\ E.+1) - »

for s ™ p.
Define the function

0 for x e E,
MX) =

P for X 6 EP N EP+1”

If xQe E, then, for any e > 0 and any number pQ e N such that
- < e, there exists & >0 such that, for each h such that
Ih e O, &, there is

lexQ + ) - PO - | <E,



whence we get

Ec sC., (€7))
If non xQe R\ E, then 3pQe N Vi >0 3Jh]j e O, ) vr < po
[(xc + h) e ErA (X0 - h) f Er]. Consequently, we have

M0 + h) - «(xQ - h) i = -Jl, s<r<pQ, k>r.

Then we obtain

ICQ +h) - *(xQ -h>=J -1 *1 -stTspJATTT »
Hence we infer that

Xey i SC9 @
From (13) and (12) we have

E = s, (€T))
The set H =SC*"\ Ee fo. Then

R \XHe G6.

From the theorem in paper [4] by S. Marcus it follows
that there exists a function EE R =R such that

R\ H = sC.

Put f=4+ i If xQ6 E, then xQe SC"A xQ& SC*, and so,

X 6 SC,. That 1is, Ec SC,. Whereas if x. e R \E, then x,e
[¢] t 1 0 [9}

e HvV xQi SCM. If xQe H, then xQf SC», and since xQe SCM,
therefore xQ$ SCF. Whereas if xQ$ SC», then xQe SC», thus
also xQ~ SCf. Consequently, we have proved that E = SCF, which
completes the proof of the theorem.

Example. There exist a non-measurable set E and a func-
tion f: R %R, such that E = SCf.

Let H be a (Hamel) basis for the space R over the field of
rational numbers, such that l1e h. Every real number x has a
unique representation of the form

x = £ xh-h @)
hcH h

where X # 0 only for a finite number of coefficients h e H,



xhe Q. Let E = {xe R: xx = 0}. From papers [3] and [Glit fol-

lows that E is a dense set with empty interior in R and that it

is a non-measurable linear subspace of the space R over the

field Q. We consider the characteristic function of the set E:
for x e E,

for X N E.
We now prove that E = SCF. Let xQe E. Then from the as-

L&Y

sumption that E is a linear space we have

f(xo + V - f(xo * V :O <16*
for any sequence ihn)neN converging to zero. It follows  from
@6) that

lip (F&x  +h ) - f, ~h ) =0
Thus
E c SCF. an

Now, let xXxQ£ E. Since E =R, there exists a seguence
{Xn>nGN  such that xne E for each n e N and such that Iim X =
= n

"V Let hn=xn -V Then xo + hn = xne E' while xo ‘' hn
= 2xc - xn i E. Otherwise, if 2xq - xne E, then (2Q - xn)

+

+ xfi=2xQe E, so that xQe E, and this contradicts the choice
of the point xQ. Therefore we have shown that there exists a se-
quence of real numbers converging to zero, such that

feo+V "fxo-V =0+1=1 <18)
for any n, which means that xq SC*. From this and from (7)
we have E = SCf.

THEOREM 4. If the set Gc r 1is a linear space over the
field Q of the second Baire category in R, and R \ G = R, then
the set G = R \ G 1is not a weak section of symmetry.

Proof. Let us assume that G* = R\ G is a weak section
of symmetry. Then there exists a monotone decreasing sequence of
sets {Cp 6N Fulfilling the conditions

@ G" =D G -
pEN  p



(®) o «=G")rr*{VpeN36>0 Vhe (O, 60 30e (,
[((*o - h) e Gp+t0O A CQ + h) e Gp+Q) Vv ((XQ — h) * Gp+Q A (Q ¢ hi

Se
Let
GP = HP Uuec @
and
Rp * G \ Hp- p*1, 2, ... (€.9))
Using (20), we have
Gn U R @
peN v

Now, let xe G. Then from (20), for any pe N, xe Hp or x e Rp.
If, for each pe N, xe Hp, then, by (19), xe Gp for any peN.

Hence from (@ we have that x e G, which contradicts the choice
of x. Thus there exists pe N such that x e Rp. Therefore

xe M R e Thus we have obtained that (@ R = G, which, to-

piN  p peN p
gether with (21), gives
G- U FE) <22
peN

Since G is of the second category, thus it follows from @)
that there exists pe N such that R is of the second cat-
o}

Po

egory in R. So, there exists an interval (@, b) for which (@ b)
cR . Now, let

po

xXQe (@ b)n G @
Then there exists a sequence of points (Wn)neNr rI\L&n@wR = xQ,
Wy > Xg and w, e RpQ for ne n. From (20) we have that whe G
for n=1, 2, ... Thus wh= QCQ+h )E GUH )=¢6 for

po po
n~1, 2, ... From condition (b) it follows that for sufficient-
ly large n >nQ, we have (Q -hf) = (2Q -w )N~ G +1- Be-
po

cause of (@, we have that, for n>nQ, (@x - wn)4 G and

hence

1}



(2xqg - wn) e G. 25

Since wnc G, G 1is a linear space over the field Q and, because
of (24), we have

X0 = K (2x0 " WNn) + WJ e G* (25)

Condition (25) contradicts (23). This contradiction completes the
proof of the theorem.

Theorems 2 and 3 give a partial characterization of the set
SCFf for a function f: R »R. Our example shows that the set
SCf may even be non-measurable. Moreover, let us notice that
the set E from the example is a linear space over the field Q of
rational numbers, fulfilling the hypothesis of Theorem 4. Thus

R\ E 1is not the set of points of symmetry continuity for any
real function of a real variable f.
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JtnuBZ Jaskuts, Bozena Szkopinska

0 ZBIORZE SYMETRYCZNEJ CIAGLOSCI

W artykule podane sg pewne warunki konieczne oraz pewne warunki dostatecz-
ne na to, by zbidér byt zbiorem wszystkich punktéw symetrycznej ciaghosci funk-
cji f: R % R. Ponadto dowodzi sie, ie istniejg zbiory nie bedace zbiorami

punktéw symetrycznej ciggtosci dla zadnej funkcji fj R =+ R.



