Janusz Jaskuła, Bożena Szkopińska

ON THE SYMMETRIC CONTINUITY

S. Marcus proved in [4] that, for any set $E \in G_{\delta}$, there exists a function $f \colon R \to R$ for which $SC_f = E$ where SC_f denotes the set of all points of symmetric continuity of the function $f \colon Next$, C. L. Belna in [1] that, for any function $f \colon R \to R$, the set $SC_f \cap D_f$ is of interior measure zero, where D_f denotes the set of points of discontinuity of the function $f \colon R \to R$.

In the present paper, some necessary conditions (Theorem 2) and sufficient ones (Theorem 3) are given in order that a given set be the set of points of symmetric continuity for some function $f\colon R\to R$. Moreover, from Theorem 4 and our example it follows that there exists a set which is not the set of all points of symmetric continuity for any function $f\colon R\to R$. The example is, at the same time, an example of a function $f\colon R\to R$ for which SC_f is a non-measurable set. The existence of such a function was proved, with the continuum hypothesis applied, by P. E r d ö s in [2].

DEFINITION 1. The symmetric oscillation of a function at a point is given by

$$s_{OSC} f(x_O) = \overline{\lim_{h \to 0}} |f(x_O + h) - f(x_O - h)|.$$

The following theorem is self-evident:

THEOREM 1. If a set E is such that E = SC_f for some f: R + R then E = $\bigcap_{p \in \mathbb{N}} E_p$ where $E_p = \{x \in R: S_{OSC} f(x) < \frac{1}{p}\}$.

DEFINITION 2. We say that a set A is a weak section of sym-

metry if there exists a decreasing sequence of sets $\{A_p\}_{p\in \mathbb{N}}$ such that

(i)
$$A = \bigcap_{p \in N} A_p$$

(ii)
$$(\mathbf{x}_0 \in \mathbf{A}_p) \Longrightarrow \{\exists \delta > 0 \ \forall \ |\mathbf{h}| \in (0, \delta) \ \forall \mathbf{r} < \mathbf{p} \ \exists \ \theta \in \{0, 1\}$$

$$[((\mathbf{x}_0 + \mathbf{h}) \in \mathbf{A}_{\mathbf{r} + \theta}) \Longleftrightarrow ((\mathbf{x}_0 - \mathbf{h}) \in \mathbf{A}_{\mathbf{r} + \theta})]\}.$$

DEFINITION 3. If there exists a decreasing sequence of sets $\left\{ A_{\mathbf{p}}\right\} _{\mathbf{p}\in N}$ such that

(i)
$$A = \bigcap_{p \in N} A_p$$

(ii)
$$(x_0 \in A_p) \Rightarrow \{\exists \delta > 0 \ \forall |h| \in (0, \delta) \ \forall r$$

then the set A is said to be a section of symmetry.

THEOREM 2. If $f: R \rightarrow R$, then the set $E = SC_f$ is a weak section of symmetry.

Proof. Using theorem 1, it is enough to prove that the sequence of sets $\{E_k\}_{k\in\mathbb{N}}$ where $E_k=\{x\in\mathbb{R}\colon S_{\mathrm{OSC}}\ f(x)<\frac{1}{9^k}\}$ has property (ii) from Definition 2, since the monotonicity of the sequence $\{E_k\}_{k\in\mathbb{N}}$ and property (i) are obvious. From the monotonicity of the sequence $\{E_k\}$ and the negation of condition (ii) we have that there exist a point x_0 and a number $j\in\mathbb{N}$ such that $x_0\in E_j$ and, for any number $\delta>0$, there exists h, $|h|\in\{0,\delta\}$, and an index k< j such that

$$x_o + h \in E_{k+1} \land x_o - h \notin E_k$$
 (1)

From (1) and Definition 1 and the way the sets $\mathbf{E}_{\mathbf{k}}$ are defined we have

$$\lim_{|t| \to 0} \sup |f(x_0 + h + t) - f(x_0 + h - t)| < \frac{1}{9^{k+1}}$$
 (2)

$$|\lim_{|t| \to 0} \sup |f(x_0 - h + t) - f(x_0 - h - t)| \ge \frac{1}{9^k}$$
 (3)

Since $x_0 \in E_j$, we have

$$\lim_{|y| \to 0} \sup |f(x_0 + u) - f(x_0 - u)| < \frac{1}{9^{j}}$$
 (4)

So, there exists $\delta_1 > 0$ such that

$$|f(x_0 + u) - f(x_0 - u)| < \frac{1}{9^{\frac{1}{2}}} \text{ for } u \in (0, \delta_1)$$
 (5)

Let now $\delta_2 = \frac{\delta_1}{2}$. Then there exists $h \in (0, \delta_2)$ such that, for k, conditions (2) and (3) are satisfied. So, there exists t_0 such that $|t_0| \in (0, \delta_2)$ and

$$|f(x_0 + h + t_0) - f(x_0 + h - t_0)| < \frac{1}{9^{k+1}}$$
 (6)

$$|f(x_0 - h + t_0) - f(x_0 - h - t_0)| > \frac{8}{9} \cdot \frac{1}{9^k}$$
 (7)

Note that $|h + t_0| \in (0, \delta_1)$ and $|h - t_0| \in (0, \delta_1)$. Consequently, from (5) we have

$$|f(x_0 + h + t_0) - f(x_0 - h - t_0)| < \frac{1}{9^{j}}$$
 (8)

and

$$|f(x_0 + h - t_0) - f(x_0 - h + t_0)| < \frac{1}{9^{\frac{1}{2}}}$$
 (9)

that the set SC, A D, has

From conditions (6), (7), (8) and (9) we get

$$\frac{8}{9} \cdot \frac{1}{9^{k}} \langle |f(x_{o} - h + t_{o}) - f(x_{o} - h - t_{o})| =$$

$$= |f(x_{o} - h + t_{o}) - f(x_{o} + h - t_{o})| +$$

$$+ (f(x_{o} + h - t_{o}) - f(x_{o} + h + t_{o})) +$$

$$+ (f(x_{o} + h + t_{o}) - f(x_{o} - h - t_{o}))| <$$

$$< \frac{1}{9^{j}} + \frac{1}{9^{k+1}} + \frac{1}{9^{j}}$$
(10)

Thus we have

$$\frac{8}{9} \cdot \frac{1}{9^{k}} < \frac{1}{9^{j}} + \frac{1}{9^{k+1}} \tag{11}$$

which is impossible because of the fact that k < j.

Consequently, the sequence $\{\mathbf{E}_k\}_{k\in\mathbb{N}}$ satisfies condition (ii) from Definition 2. This ends the proof of the theorem.

If a set E C R is a section of symmetry, let us denote

$$\hat{\mathbf{E}} = \{ \mathbf{x} \in \mathbb{R} \colon \forall \mathbf{p} \in \mathbb{N} \quad \exists \delta_{\mathbf{x}} > 0 \quad \forall |\mathbf{h}| \in (0, \delta_{\mathbf{x}}) \quad \forall \mathbf{r} < \mathbf{p}$$

$$[((\mathbf{x} + \mathbf{h}) \in \mathbf{E}_{\mathbf{r}}) \iff ((\mathbf{x} - \mathbf{h}) \in \mathbf{E}_{\mathbf{r}})] \}.$$

REMARK. If E is a dense set and a section of symmetry, then the interior measure of the set $\hat{E} \setminus E$ is equal to zero.

Proof. Let the sequence $\{E_p\}_{p\in \mathbb{N}}$ satisfy the conditions of Definition 3. Put

$$f(x) = \begin{cases} 0 & \text{for } x \in E \\ \frac{1}{p} & \text{for } x \in E_p \setminus E_{p+1}. \end{cases}$$

Then $\hat{E}=SC_f$ (see the proof of Theorem 3) and R \ E \subset D_f where D_f denotes the set of all points of discontinuity of the function f.

Making use of the result of C. L. Belna in [1] stating that the set $SC_f \cap D_f$ has the interior measure equal to zero and from the fact that $\hat{E} \setminus E = \hat{E} \cap (R \setminus E) \subset \hat{E} \cap D_f$, we obtain that the set $\hat{E} \setminus E$ has the interior measure equal to zero.

THEOREM 3. If E is a section of symmetry and the set $\hat{E} \setminus E \in F_{\sigma}$, then there exists a function f: R \rightarrow R such that E = SC_f .

Proof. Let the sequence $\{E_p\}_{p\in\mathbb{N}}$ satisfy the conditions of Definition 3 and E_1 = R. Then

$$R = E \cup \bigcup_{p \in \mathbb{N}} (E_p \setminus E_{p+1}), (E_p \setminus E_{p+1}) \cap (E_s \setminus E_{s+1}) = \emptyset$$

for s ≠ p.

Define the function

$$\phi(\mathbf{x}) = \begin{cases} 0 & \text{for } \mathbf{x} \in \mathbf{E}, \\ \frac{1}{p} & \text{for } \mathbf{x} \in \mathbf{E}_{p} \setminus \mathbf{E}_{p+1}. \end{cases}$$

If $\mathbf{x}_0 \in \hat{\mathbf{E}}$, then, for any $\epsilon > 0$ and any number $\mathbf{p}_0 \in \mathbf{N}$ such that $\frac{1}{\mathbf{p}_0} < \epsilon$, there exists $\delta > 0$ such that, for each h such that $|\mathbf{h}| \in (0, \delta)$, there is

$$|\phi(x_0 + h) - \phi(x_0 - h)| < \varepsilon,$$

whence we get

$$\hat{\mathbf{E}} \subset \mathbf{SC}_{\phi}$$
 (12)

If now $x_0 \in R \setminus \hat{E}$, then $\exists p_0 \in N \quad \forall \delta > 0 \quad \exists |h| \in (0, \delta) \forall r < p_0$ $[(x_0 + h) \in E_r \land (x_0 - h) \notin E_r].$ Consequently, we have

$$|\phi(x_0 + h) - \phi(x_0 - h)| = |\frac{1}{k} - \frac{1}{s}|, s < r < p_0, k \ge r.$$

Then we obtain and the same same and a said award work and the

$$|\phi(x_0 + h) - \phi(x_0 - h)| = \frac{1}{s} - \frac{1}{k} \ge \frac{1}{s} - \frac{1}{s+1} \ge \frac{1}{p_0(p_0 + 1)}$$

Hence we infer that

$$x_0 \notin SC_{\phi}$$
 (13)

From (13) and (12) we have

$$\hat{E} = SC_{\phi} \tag{14}$$

The set $H = SC_{\phi} \setminus E \in F_{\sigma}$. Then

 $R \setminus H \in G_{\delta}$

From the theorem in paper [4] by S. Marcus it follows that there exists a function $\psi\colon R\to R$ such that

$$R \setminus H = SC_{\psi}$$

Put $f = \phi + \psi$. If $x_o \in E$, then $x_o \in SC_{\phi} \land x_o \in SC_{\psi}$, and so, $x_o \in SC_f$. That is, $E \subset SC_f$. Whereas if $x_o \in R \setminus E$, then $x_o \in H \lor x_o \notin SC_{\phi}$. If $x_o \in H$, then $x_o \notin SC_{\psi}$, and since $x_o \in SC_{\phi}$, therefore $x_o \notin SC_f$. Whereas if $x_o \notin SC_{\phi}$, then $x_o \in SC_{\psi}$, thus also $x_o \notin SC_f$. Consequently, we have proved that $E = SC_f$, which completes the proof of the theorem.

E x a m p l e. There exist a non-measurable set E and a function $f: R \rightarrow R$, such that $E = SC_f$.

Let H be a (Hamel) basis for the space R over the field of rational numbers, such that $1 \in H$. Every real number x has a unique representation of the form

$$x = \sum_{h \in H} x_h \cdot h \tag{15}$$

where $x_h \neq 0$ only for a finite number of coefficients $h \in H$,

 $x_h \in Q$. Let $E = \{x \in R: x_1 = 0\}$. From papers [3] and [5]it follows that E is a dense set with empty interior in R and that it is a non-measurable linear subspace of the space R over the field Q. We consider the characteristic function of the set E:

$$f(x) = \begin{cases} 1 & \text{for } x \in E, \\ 0 & \text{for } x \notin E. \end{cases}$$

We now prove that $E = SC_f$. Let $x_o \in E$. Then from the assumption that E is a linear space we have

$$f(x_0 + h_n) - f(x_0 - h_n) = 0$$
 (16)

for any sequence $\{h_n\}_{n\in\mathbb{N}}$ converging to zero. It follows from (16) that

$$\lim_{n \to \infty} (f(x_0 + h_n) - f(x_0 - h_n)) = 0.$$

Thus

Now, let $x_0 \notin E$. Since $\overline{E} = R$, there exists a sequence $\{x_n\}_{n \in N}$ such that $x_n \in E$ for each $n \in N$ and such that $\lim_{n \to \infty} x_n = x_0$. Let $h_n = x_n - x_0$. Then $x_0 + h_n = x_n \in E$, while $x_0 - h_n = 2x_0 - x_n \notin E$. Otherwise, if $2x_0 - x_n \in E$, then $(2x_0 - x_n) + x_n = 2x_0 \in E$, so that $x_0 \in E$, and this contradicts the choice of the point x_0 . Therefore we have shown that there exists a sequence of real numbers converging to zero, such that

$$f(x_0 + h_n) - f(x_0 - h_n) = 0 + 1 = 1$$
 (18)

for any n, which means that $x_0 \notin SC_f$. From this and from (17) we have $E = SC_f$.

THEOREM 4. If the set $G \subset R$ is a linear space over the field Q of the second Baire category in R, and $R \setminus G = R$, then the set $G' = R \setminus G$ is not a weak section of symmetry.

Proof. Let us assume that $G'=R\setminus G$ is a weak section of symmetry. Then there exists a monotone decreasing sequence of sets $\{G_p\}_{p\in N}$ fulfilling the conditions

(a)
$$G' = \bigcap_{p \in \mathbb{N}} G_p$$
 belong within a set with G

(b) $(x_0 \in G') \Longrightarrow \{ \forall p \in N \exists \delta > 0 \forall h \in (0, \delta) \exists \theta \in \{0, 1\} \}$ $[((x_0 - h) \in G_{p+0} \land (x_0 + h) \in G_{p+0}) \lor ((x_0 - h) \notin G_{p+0} \land (x_0 + h)$ ¢ G_{n+0})] }.

Let

$$G_{\mathbf{p}} = H_{\mathbf{p}} \cup G' \tag{19}$$

and
$$R_{\mathbf{p}} = G \setminus H_{\mathbf{p}}, \qquad \mathbf{p} = 1, 2, \dots$$
 (20) Using (20), we have

$$G \supset \bigcup_{p \in \mathbb{N}} R_p$$
 (21)

Now, let $x \in G$. Then from (20), for any $p \in N$, $x \in H_n$ or $x \in R_n$. If, for each $p \in N$, $x \in H_p$, then, by (19), $x \in G_p$ for any $p \in N$. Hence from (a) we have that x ∈ G, which contradicts the choice of x. Thus there exists $p \in N$ such that $x \in R_p$. Therefore $x \in \bigcup R_p$. Thus we have obtained that $\bigcup R_p \supset G$, which, together with (21), gives

$$G = \bigcup_{p \in \mathbb{N}} R_p$$
 (22)

Since G is of the second category, thus it follows from (22) that there exists po e N such that Rpo is of the second category in R. So, there exists an interval (a, b) for which (a b) CR_{po}. Now, let

$$x_0 \in (a, b) \cap G'$$
 (23)

Then there exists a sequence of points $\{w_n\}_{n\in\mathbb{N}}$, $\lim_{n\to\infty} w_n = 0$ $w_n > x_0$ and $w_n \in R_{p_0}$ for $n \in N$. From (20) we have that $w_n \in G$ for n = 1, 2, ... Thus $w_n = (x_0 + h_0) \notin (G' \cup H_p) = G_p$ n = 1, 2, ... From condition (b) it follows that for sufficiently large $n > n_0$, we have $(x_0 - h_n) = (2x_0 - w_n) \notin G_{p_0+1}$. cause of (a), we have that, for $n > n_0$, $(2x_0 - w_n) \notin G$ hence

$$(2x_0 - w_0) \in G$$
. (24)

Since $w_n \in G$, G is a linear space over the field Q and, because of (24), we have

$$x_0 = \frac{1}{2}[(2x_0 - w_n) + w_n] \in G.$$
 (25)

Condition (25) contradicts (23). This contradiction completes the proof of the theorem.

Theorems 2 and 3 give a partial characterization of the set SC_f for a function $f\colon R\to R$. Our example shows that the set SC_f may even be non-measurable. Moreover, let us notice that the set E from the example is a linear space over the field Q of rational numbers, fulfilling the hypothesis of Theorem 4. Thus $R\setminus E$ is not the set of points of symmetry continuity for any real function of a real variable f.

REFERENCES

- [1] Belna C. L., Symmetric continuity of real functions, Proc. Amer. Math. Soc., 87 (1983), 99-102.
- [2] Erdös P., Some remarks on subgroups of real numbers, Colloq. Math., 42 (1979), 119-120.
- [3] F i l i p c z a k M. F., Sur les derivées symetriques des functions approximativement continues, Colloq. Math., 34 (1976), 249-256.
- [4] Marcus S., Multiple F₆ si continuitatea simetrica, Bull. Stun., 4 (1955), 871-886.
- [5] Szkopińska B., Some structural properties of measurable sets, Demonst. Math., 4 (1982), 1-26.

Institute of Mathematics University of Łódź

Janusz Jaskuła, Bożena Szkopińska

O ZBIORZE SYMETRYCZNEJ CIĄGŁOŚCI

W artykule podane są pewne warunki konieczne oraz pewne warunki dostateczne na to, by zbiór był zbiorem wszystkich punktów symetrycznej ciągłości funkcji f: $R \rightarrow R$. Ponadto dowodzi się, że istnieją zbiory nie będące zbiorami punktów symetrycznej ciągłości dla żadnej funkcji f: $R \rightarrow R$.

to a system $(\mathcal{F}_{i})_{i,j,\ell}$ at solution of i . The i