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The present paper is a continuation of the autor’s paper [7], in 
which we have defined and studied characteristic polynomials for polyno­
mials in algebraic elements in a linear commutative ring. We also have 
given examples of applications for singular integral operators with ro­
tation.

1. ALGEBRAIC AND ALMOST ALGEBRAIC ELEMENTS 
OVER * COMMUTATIVE LINEAR RING

Let X be a linear ring over the complex scalar field with 
unit I. Throughout this paper, XQ will stand for a commutative 
linear ring in X and I e XQ.

DEFINITION 1.1. An element S e X is said to be an algebraic
element over if thert it a polynomialo

m v
P(t) = 2 pvtK, p * C (1.0)

k=0 *
in variable t with the coefficients in XQ such that

P(S) = 0/ £>— * ' k = 0, 1, ..., m. 
pk

DEFINITION 1.2. If there is a polynomial P(t) of the form 
(1.0) satisfying the conditions p^ ~ v U Xc (k = 0, 1, m)
and P(S) = T e V , where 7 is a two-sides ideal in X, then we say 
that S is an almost algebraic element with respect to the ideal



V over XQ. if there is a polynomial P(t) with the smallest de­
gree m for which the identity P(S) = 0 (P(S) = Te ) holds, 
we say that s  is an algebraic (almost algebraic) element of or­
der m.

It is easy to see that each element S e XQ is an algebraic
element over XQ with the characteristic polynomial of the form
Pg(t) = t - S. Notice that all algebraic elements (over a field
of scalars [l] - [2]) are the ones over X .o

We denote by <A (X ) the set of all algebraic elements over X .u o
Similarly, by c4 (X0/9r) we denote the set of all almost algebraic 
elements over XQ with respect to an ideal V . The characteristic 
polynomials of S will be denoted by Ps(t). Evidently, if an ele­
ment S is almost algebraic with respect to an ideal V c x then 
the corresponding coset [s] in the quotient ring [x] = X/V is

algebraic and if P (t) = p tm + p.t"1-1 + ... + p then P(t)
S ° 1 m [SJ

■ [ p j f  + [p1]tm'1 + ... + [pj.
The following examples show that an algebraic (almost algebra­

ic) element over XQ is not necessarily an algebraic (almost al­
gebraic) over a field of scalars.

E x a m p l e  1.1. Let XQ = cp [o, l] and let (S<p) (t) = 
-cp(l - t) (Vcp) (t) = a(t)cp (t) + b(t) (Sep) (t) where a(t), b(t) 
e <p[0, l]. It is easy to verify that S2 = I; SA = AS; SB = BS; 
V2 - AV + B = 0 where A = [a(t) + a(l - t)J I; B = [a(t)a(l - t) 
b(t)b(l - t)]l. From tnese relations we obtain the following 

results: V is an algebraic element over XQ with characteristic 
polynomials Py(t) = t2 - At + B. It is an algebraic element 
over a ring of scalars if and only if a(t) + a(l - t) = const; 
a(t)a(l - t) - b(t)b(1 - t) = const.

E x a m p l e  1.2. Let r  be a simple closed contour of 
Liaponour type. Denote by L0(Lp(D) (1 < p < «) the set of all
linear operators A with domains Dft = L (D and with values in 
Lp(r).



Let XQ = Cp ( T) ; X = Lq(L (D) 

(Sep) (U) = t1*1»

(V(p) (u) « a(u) cp (u) + b(u) (Sep) (u); a(u), b(u) e <p (r). (1.2) 
The following well-known result was stated in [l]-[4]: S =1; 

Sa - aS e ? for a e <p (D where V is an ideal of compact con­
tinuous operators. This result permits us to obtain the fol­
lowing theorem.

THEOREM 1.1. Suppose that V is given by the formula (1.2) 
then Vc cA (X0/9-) and Pv(t) = t2 - 2at + a2 - b2.

E x a m p l e  1.3. Suppose that r ,  X and V are defined as 
in the Example 1.2. Denote by XQ the linear ring generated by 
all operators of the following form V = al + bS + D; a, becp(r), 
D E i .  Observe that [X0] = XQ/ir is the commutative ring. Let 
(Wcp) (u) = cp [a(u)] ,  ue r ,  where a(u) is a Carleman function 
([1 ]" [4 ]) • The operator w defined by means of a Carleman func­
tion of order 2 is a multiplicative involution w2 = I.

By straightforward calculations we can prove the following. 
THEOREM 1.2. Let K ~ al + bS + (cl + dS)W where a, b, c, de 

ecp(r), S and W are defined by the formulas

(Sep) (u) = ^  / * * ^ 1  (W«p) (u) = <p rct(u)] ; W2 « I.

Then K e C+ (XQ/tr) with the characteristic polynomial 

PR(t) = t2 - (A + Ax)t + AAX - CCl 

where
A = al + bS; Ax = a(a)I + yb(a)S;
C = cl + dS; C1 = c(a)I + yd(ot)S

(y = 1 when the shift does not change the orientation of the con­
tour r, y = -1 for the contrary case).

Similar examples can easily be extended (see [l]-[4]).



2. CHARACTERIZATION OF THE POLYNOMIALS 
IN ALGEBRAIC ELEMENTS WITH COMMUTATIVE COEFFICIENTS

In this section we consider the polynomial

V: = V(S) = Z Aj S™"3 (2.1)
j-1 1

where S is an algebraic element (over a field of scalars) with 
the characteristic polynomial

n r,
Ps(t) = n^(t - tj) J} tj e C ti # t̂  for i * j,

ro + ri + ••• + rn = N (2.2)

and A. e XQ, j = 0, 1, ..., m.
DEFINITION 2.1. We recall that an element S e X is X -statio-o

nary if SA = AS for all A e X .o
For stationary elements we can formulate the following result. 
THEOREM 2.1. Let S be an algebraic element with the charac­

teristic polynomial (2.2). Suppose that S is XQ-stationary. Then
V of the form (2.1) is an algebraic element over XQ.

P r o o f .  It is easy to verify that
V(S) - Vit^JI = (S - tj) V (S, t,) (2.3)

where
V(S* tj) = A0 6m-l (s' tj) + A1 6m-2 (S' tj) + *" + Am-1
i k (S, t j )  = Sk + t j  s * -1 + t 2 sk-2 + . . .  + t j  I.

n r .

Put P(t)= ¡1 (t-Vit.))-5. From (2.3) we get
j=l j
A  r. n r. n r r.p<v) = n (v - v(ti)> ] = n <s - t.D 3 ri[v(s, t.>j j = oj=i  ̂ j=1 j j=i j

which proves the V is an algebraic element over XQ.
To determine the characteristic polynomial of the element V o- 

ver a commutative ring we have to introduce some necessary no­
tions .

First we consider the case of simple roots.



LEMMA 2.1. Suppose that the algebraic element S has simple 
roots tx, t2, ..., tR only and that

V(tx> = ... = V(tn )̂ = B1

= =B2

v(t„+1) = ... = V(tn, = Bs (2.4)
s-1

(Bi t Bj for i * j, nx + n2 + ... + ng = n).
Moreover, we assume that S is XQ-stationary and 

njn  (B, - B ) £ Py * 0; j = 1, 2, ..., s 
vji j -1 v=n+l

where P2, ..., Pn are projectors associated with S.

Then Pv(t) = f~l (t - B„).
v=l v

P r o o f .  Denote fl (t - Bv) by Q(t), then Q(V) = 
v=l

= n tv - b >.
v=l

It is easy to see that 
nv+l

V(S) - B .. = FI (S - t^I) * Q +1(S); v = 0, 1, ..., s-1 
V+1 j=n+l 3 V+1

v
where Q^+1(S) are polynomials in variable S with coefficients in

n n
X . Thus Q(V) = n  (S - t.I) fl Qi(S) = 0.o j=1 3 j=1 3

Suppose that Q(t) = fl (t - B ) (IS v s s; v - fix) then
v*vQ

by the assumptions



Lemma 2.1 permits us to introduce.
DEFINITION 2.2. An algebraic element S (over a field of sca­

lars) of order m is said to be X -linearly independent, if the 
condition

Aq + Ax s + ... + Am Sm_1 =0; A. e XQ, j = 0, 1, ..., m - 1 
implies Aq = Ax = ... = Afn_1 = 0.

LEMMA 2.2. Suppose that S is an algebraic element with sin­
gle roots t1# t2, ..., tm only. Then S is XQ-linearly indepen­
dent if and only if the projectors P^ P2, ..., Pm associated 
with S are XQ-linearly independent.

P r o o f .  Sufficiency. Suppose that P1# P2> ..., Pm are XQ- 
linearly independent and Aq + A^S + ... + Am_1 Sm 1 = 0; Aj e XQ. 
This equality can be rewritten as follows:

m-1 .  m-1 m j  m m-1
£ Aj S - 2 A. T. tr P. = £ (Z A. tP)Pv = 0. 
j=0 3 j=0 3 k=l * * k=l j=0

m=l j
thus, by our assumptions, we get 5: A. tP = 0. It is easy to ve-

j=0 3
rify that the determinant of this system with respect to the un- 
knows Aj is the Vandermonde determinant of the numbers t̂ , t2, 
..., tm. This implies Aj=0; j= 0 ,  1, ..., m - 1. Thus, S is
X -linearly independent.

Necessity. Suppose that S in XQ-linearly independent and 
m
£  Aj Pj = 0; A j ^ Xo r 3 = 1, 2, .•., m.

Acting on both sides of this equality by the elements P^ we
n  S ‘  t 1 Iobtain A. P. = 0 (k = 1, 2, ..., m) where P. = I ! ---- f- (see

* J#k fck " ti
[l]). Since deg P. £ m - 1 we get A. f] 77— 1 = 0. Thus,

K * j#i (tk ■ V
Ak = °.

With the aid of Lemma 2.2 we can formulate the result of Lem­
ma 2.1 as follows.

THEOREM 2.2. Let S be an algebraic element'with single roots



tjy t2, ..., tm only. Suppose that S is XQ-linearly independent
and that [~| (B. - B ) / 0 for j = 1, 2, ..., s where B . (j = 

v/j J 3s
= 1, 2, ..., s) are defined by (2.4). Then Py(t) = fl (t - B ).

v=l
Consider now the case of multiple roots.
LEMMA 2.3. Suppose that s is an algebraic element with the

characteristic polynomial of the form (2.2). Then S is X -line-o
arly independent if and only if the elements P̂ j

V1(S - tj I)J Pj (j =1, 2, ..., n; Vj =1, 2, ..., v.. - 1) associa­
ted with S are XQ-linearly independent.

P r o o f .  Necessity. Suppose that S is XQ-linearly indepen­
dent and

fml So Ajv ̂  = ° Where 6 X°' Qi = (s ' fcjI)V V
Applying the element Qk to both sides of this equality, we 

obtain the following relations

rk * v+p
v=0

Since Qkk = 0 (see [1]— [23) we can rewrite these relations as 
follows

Ak0 P + Akl «k + ••• + Akrk-1 V* 1 = 0

Ak0 Qk + + Akrk-2 ^  = 0

Ak0 2kk 1 = 0 (2*5>
By our assumptions, from the last equality of (2.5) we have 

Ak0 = 0. This and equalities (2.5) together imply that Akv =
= 0 V k, v

Sufficiency. Suppose that Qk (k = 1, 2, ..., n; v = 0, 1, 
rk _ x) are XQ-linearly independent and



N-l
Z Aj Sj a 0, Aj e Xo (2,6)

Using the equality Sk P . = Z (k) t^"u we can write (2.6)
J m=0 v 3 3

as follows
n rj_1 N-l k k
Z Z ( Z (*;) A. ti ) Qj = 0 
}=1 v=0 k=v v K 3 3

N~1 k k-vBy our assumptions, we get Z ( ) t., A. =0; j =1, 2,
k=v v 3 K

«../ n; v — 0, 1, ..., r̂  — 1.
It is easy to verify that the determinant of this system with 

respect to unknowns A^ is invertible. This implies that Ak = 0, 
for every k.

REMARK 2.1. All algebraic elements over XQ are Xo-linearly 
independent. For instance, all algebraic element are C-linearly 
independent.

LEMMA 2.4. Suppose that S is an algebraic element with the 
characteristic polynomial of (2.2). Let

n rk_1
v(s) = £ i  £ 0 Ak" Sk; Akve x°; Ak0 * 0i k = x' 2.....n

n rk-1
P(S) = Z £ ak Qk; ak e C 

k=l v=0 K
and suppose that s is Xo~linearly independent and Xo-stationary. 
Then P(S) V (S) = 0 implies P(S) = 0.

P r o o f .  It is easy to verify that
n V 1

P(S) V (S) = z  z  z  a. A. = Qk *  0.
k=l 1=1 v+y=i kv k'u k

This implies Z a. Akli = 0; k = 1, 2, ..., n; i = 0, 1, ..., v+p=i KV
rk - 1. We can rewrite these relations as follows



By our assumptions, from the first equality of (2.7) we get 
ak0 * 0. This, and equalities (2.7), together imply that ak * 0
V It, v.

Mow we can formulate the main result in our investigations: 
THEOREM 2.3. Let S be an algebraic element with the characte­

ristic polynomial

ps(t) = n, r[ <* - t i / 13* t4j # tvw

for (i, j) # (v, y) (2.8)
and V(t) - a polynomial in variable t with coefficients belong 
to XQ. Suppose that

(i) V(t^j) c k * 1, 2, ..., n> j = 1, 2, *.*i nk
(3^j) (s. .+1)

(ii) V'(tkj) = ... = V *•> (tkJ) « 0; V <tkj) Jt 0.

If S is XQ-linearly independent and XQ-stationary, then

Pv (t) = (t - R,)6i> V: = V (S) (2.9)v i=i 1

where
when is an integer,

[â ] + 1 otherwise,fii
j-

sn  ^12 *̂̂ ia. = max {— , \, r +~T' •••* n + T} * i = l, 2, ...,n.1 sil + 1 i2 + 1 sin + 1

We base the proof Theorem 2.3 on three additional lemmas.
LEMMA 2.5. Let S be an algebraic element with the characte­

ristic polynomial of the form (2.2). Suppose that V(t) is a po­
lynomial with coefficients belonging to XQ such that

V(ti) # V(tj) for i 4 j; V ' U ^  # 0; i = 1, 2, ..., n.
If S is XQ-linearly independent and XQ-stationary, then



P r o o f .  Denote [~] (t - V(t^)) 3 by P(t). 
j=l 3

by P(t). According to

Theorem 2.1, P(V) = 0. Put

(t - (t - for a1 < r̂ .

Observe that

Q^V) = (S - t ,  I)”1 fl [ s  - tj)]r;i • [V(S, t 1)]
3=2

“l

• n  [v(s, t.)]rj
3=2

where V(s, t^) are defined by the formula (2.3).

Put Q(t) = □  [ v ( t ,  t,)]rj • [ v ( t ,  t . ) ] “ 1 . 
j=2 3 1

According to Theorem 2.1, the element Q(S) has characteristic 
roots belonging to the set

(Qitj); j = 1, 2, ..., n}.
On the other hand, by our assumptions, we have

V(t.) - V(t,)
v ( t . ,  t j )  = -- ---- -— 2— j- 0 for i # j1 3  tL - tj

Vitj, tj) = V'Uj) # 0.

Hence, the element Q(S) has the same properties as V(S) in Lem­
ma 2.4. According to Lemma 2.4, Q^(V) = 0 if and only if

Q2(v> * n  (S - t. I)r3 . (S - t, i) 0l = o ¿ j=l 3 1

Thus Q1(V) / 0 and we get Py(t) = P(t).
LEMMA 2.6. Suppose that S is an algebraic element satisfying 

all assumptions of Lemma 2.5 and that

V(t) = £ A. ts"3
j=o 3

is a polynomial with coefficients in XQ satisfying the following 
conditions



V(tj) = V(tn); V(tx) * V(tt) for i = 2, 3, n - 1

V(ti) # 0> i = 1, 2, ..., n. (2.10)
a1 n-1 r.

If V = V<S) then Pvit) = [t - V(t. )] fl •“ Vit.,) J
j=2 J

where = max (rj, rn>.
P r o o f .  From (2.10) we can write:
V(t) - VUj) = (t - tx) (t - tn) V(t, t tn) (2.11)

where V(t, tJf tR) = Aq 6g_2 + ^  «s_3 + ... + Ag_2

6V (t, t.) 6k (t, t )
6v = “T--- r ---- £-----  1 61c (t' M  are 9iven fay (2.3).k *1 ~ *n tx - cn k j

a, n-1
Denote (t - V(t.)) 1 fl (t - V(tH)) 3 by P(t). From (2.11) we

1 j=2 3
get

a, n-2 r.
P(V) = [v(S) - V(t.)] 1 fl [v(S) - vit,)] J -

1 j=2 J

o.-r.
= PS(S) • [<S - tx I) (S - tn I)J

• [v(S, tv tn)l“ 1 • J1 [V(S, tJ)] Ij = 0.

To end the proof it is enough to show is the smallest posi­
tive integer possessing the above property.

By Theorem 2.1, without loss of generality, we consider the 
polynomial

n-1 rj
P-(t) = ft. * Vf^)]“ fl [t - V(t.) ; a < a.
1 1 j=2 3 1

and suppose that Pj-(V) = 0 i.e:

”'1 • i'j -[vis) - vit.ir n fv<s> - vttaii 3 = o j=2 J
„ n-1 rH

(S - t. I)“ * (S - t I)a fl (S - t. I) • G(S) = 0
1 j=2 3

where



G(S) = [v(S,  t . ,  t  ) ] “  Tl [v (S , t . ) ]  j
1 n j=2 3

* 0

By assumptions
V(tj) - V(tx)

V(tj' fcl' V  = (tj - t / ü ' j ”  V

for j = 2, 3, n- 1 ,
V'(t.) V'(t )v,tl- V  V  * ' °> V(V  *1- V  * t-r-j; * °-

Hence V(S, t̂ , tn> possesses the same properties as V(S) in 
Lemma 2.4. From this and P^(V) * 0 we get

« n_1 r-\(S - t. I)a (S - t I)a n (S - tj I) = 01 n j=2 3
which is a contradiction and the proof is complete.

LEMMA 2.7. Suppose that S satisfies all assumptions of Lemma 
2.4 and that

V(S) * S Aj Sm-j 
i=0 3

is a polynomial satisfying the following conditions:
(i) V(tx) = V(tn)
(ii) V(t1) t V U ^  * V(tj) for i * j, i, j = 2, 3, ..., n - 1

(s.) (s.+l)
(iii) v'ttj) = ... = V 3 (tj) = 0; V 3 (tj) / 0;

j s 1# 2, ..« f n.
Then

pv(t) = [t - v(t1) f i n 1 [t-vitj)]^ (2,12)
j=2 J

where
3̂  when is an integer

[pj + 1  otherwise.



P r o o f .  From the conditions (i) - (iii) we obtain 

V(S, tj) ■ (S - tj I) 3 Vjts, tj) for j = 2, 3, ..., n - 1

s. s
V(S' fcl' V  * (S " t l I) <S “ fcn J) V1(S' t l > V

where V^(S, t^) and V^S, t̂ , tn) possesses the same properties 
as V(S) in Lemma 2.4

Suppose that P(t) = |~l 3 • Fro:n the above argu­

ment P(V) = 0  if and only if

px(v) = [ ( s  - tx i) (s  - t n i)]Xl (S - t x I) 1 1 ( s - t n 1) n n'

• Q(S) = 0
n-1 (l+s.)X.

with Q(S) = FI (S - t. I) J 
j*2 3

Hence satisfy the conditions

X1 + X1 S1 5 rl

X1 + X1 sn s rn
Xj * Xj sj ■“ rj' J = 2, 3, •••/ n - 1 .

From these inequalities it follows that the formula (2.12) is 
proved.

We proceed to prove Theorem 2.3.
By hypothesis we obtain the characteristic roots of the ele­

ment V(S): R1# R2> •••* Rm* Hence, the characteristic polynomial
of v is a polynomial of the form 

m
Pv(t) = fl (t - RA> •
v i=l

According to Lemmas 2.5-2.7 we get ŝ j § r^. From the­
se inequalities it follows that the formula (2.9) is valid. The 
proof of Theorem 2.3 is complete.



3. SINGULAR INTEGRAL EQUATIONS WITH ROTATION

Let r be an oriented system. Suppose that r is invariant with 
respect to rotation through an angle 2n/n, where n is an arbitra­
ry positive integer.

Now consider the following operators

(Mcp) (t) = -1 / t) cp ( t )dt (3.1)

n-l J n-1-1where P(t, t) = 53 a. t3 t “ a. e C
j=0 3 3
x _j tn-l-j

IMj ) (t) = -f / i i ----  cp ( x) di (3.2)J ttI. p n . n1 t - t
and

m .

K = Y. a . (t) M3 ; (3.3)
j=0 3

where a^(t) are invariant with respect to rotation:
a j ( t) = a j (t); j = 0, 1, ..., m; ex = exp( 2l,i/n).

THEOREM 3.1. If r is an oriented system and invariant with 
respect to rotation through an angle 2n/n, then are algebra­
ic operators with characteristic polynomials:

PM (t) = t3 - t.

P r o o f .  Observe that 

k ^n-l-k n Ek
-— 5----  = £ — — L
Tn - t11 j=l “'<*■)) T - Ej t 

where £,. = e3; ex = exp(2lTi/n); u(t) = tn - 1;

-jn Ek _ J 1 when j = 1 - n
k=1 (j'(e. ) [o when j = 0, 1, . n - 2.



wnere
...... 1 , (p(x)dT „ _ 1 J? J+l un-l-j
(SCP) (t) = Hi f n-i-k n f= 1 en-l-kw

(W cp ) (t) = (p (ex t).

It is easy to see that P2.-^ = pn-l-k; S Pn-l-k = Pn-l-k S-

Thus, M2 =■ S2 Pn_!_j = pn_i-j and Mj = Mj which was to be Proved-
Suppose that Xo = { a I  + bS, a, b e C }. Then XQ is a com­

mutative linear ring with unit I. It is easy to verify that W is 
Xo-stationary and X0-linearly independent. Hence, from Lemma 
2.1 we can formulate the following

THEOREM 3.2. Let M be of the form (3.1) and XQ = {a I + b S). 
Then M is an algebraic element over XQ with characteristic roots 
belonging to {aQ, â , a2, ..., an_1>. Suppose that:

ai = a2 = •'* = anx = bl

ani+l = = an2 = b2

an ,+1 = " *n_ * bs s-i s
where b, ^ b, if i ? j. Then the characteristic polynomial of 

* J sthe operator M over XQ is of the form PM(t) = " b j> •

n-1 2 2
COROLLARY 3.1. Put P(t)= fl “ a-j) • Thenj=0 3
1) P(M) = 0
2) H is invertible if and only if â  # 0, and 

M_1 = f=Q aj' S V l - j  (Pn 5 po>*
P r o o f .  It is easy to verify that P(M) = Q(W, S) is even 

n
divisible by fl <w “ This implies P(M) = 0. On the other

j=l 3
hand,



n-1 n-1 _« n-1 « 2 2
f=0 -j s Pn-1-3 =0 s Pn-1-j = f=Q *J S Pn-l-j “
n-1

= £ P„ . , = I 
j=0 n 3

which was to be proved.
COROLLARY 3.2. M is an algebraic operator with characteris­

tic roots belonging to {±aQ, ±*i» ±afJ_1}.
Now we consider the operator K of the form (3.3). Suppose 

that a^t) e HX(D (0 < X < 1) and XQ = HX(D I * (a(t) I; 
a e hX(T)}- If a^(t) are invariant with respect to rotation: 
a j t )  = aj(t) then W is XQ-stationary and S is almost XQ- 
-stationary with respect to an ideal of compact operators [11 ~ • [4 j: 

S A - A Se ST, VA e XQ
where V is an ideal of compact operators. These imply that M is 
almost XQ-stationary with respect to .

As a simple consequence of Theorem 2.3 we obtain the following 
THEOREM 3.3. Let K be of the form (3.3) and let a.(t) be in- 

variant with respect to rotation aj(Ei = *j(t). If XQ= H (DI 
then K is an almost alqebraic element over XQ with respect to 
an ideal of compact operators Cf. Moreover, the characteristic 
roots of K belong to the set 

m .
{A^ — £ aj(t)ak; k — 0, 1, ••«, 2n — 1} (an+j: ” jt

j ~ 0, 1, ..., n — 1).
Suppose that

A. = A« “ ... — A B,1 i n.‘1
• l-r* “2A .. — ... A B_n.+l n., 2

A , - — • . • — A — B ,. ns+i s+1 S+1
where B̂  t Bj if i # j. Then the characteristic polynomial of 
K is of the form



(X - Bj).

COROLLARY 3.3. Let K satisfy the conditions of Theorem 3.3. 
Sxjppose that (j = 1, 2, ..., s + 1) are invertible. Then there 
exists a simple regularizez of the element K to the ideal V 
which is given by the formula
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Nguyen Van Man

CHARAKTERYSTYKA WIELOMIANÓW DLA EI.EMENTÓW ALGEBRAICZNYCH 
Z PRZEMIENNYMI WSPÓŁCZYNNIKAMI I ICH ZASTOSOWANIA

Ten artykuł jest uogólnieniem pracy autora [7], w której określone i opi­
sane są wielomiany charakterystyczne dla wielomianów z elementami algebraiczny­
mi w liniowym pierścieniu przemiennym. Także przedstawione są przykłady za­
stosowania dla całkowych operatorów osobliwych z obrotem.


