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ENTROPY OF TRANSVERSE FOLIATIONS

A new definition of the topological entropy of a foliation is intro-
duced in this paper. This definition is slightly different from the de-
finition of the topological entropy of a foliation given by E. G hy s,
R. Langevin, P. Walczjk in [1]. However, for any fo-
liation F, the topological entropy of F defined in [1) is less or equal
to the topological entropy of F defined here. For transverse foliations
P slid Fj, tha topological entropy of Fj n F* 1» estimated.

1. ENTROPY OP A FINITELY GENERATED PSEUDOGROUP OF MAPS
OF A COMPACT METRIC SPACE

R. Bowen defined the topological entropy of uniformly conti-
nuous maps Ts X ®X of a compact metric cpace (X, d) (see [4D-
Using a similar method, one can define the topological entropy
of a finitely generated pseudogroup of maps of a compact metric
space.

tot (Xt d) be a compact metric space with ths metric d, G - a
finitely generated pseudogroup of maps oi X, GJ - a finite set
cf generators of G. We assume that id” Cj ¢nd GH C G~.

Let
0 g : gAe Gj)
and
r(x)F xe D
5ba

X>* 0,



Define a sequence of maps dx: X x X ¢ K in the following way:
dnx, y) * max (@d( (), 9(¥))s geQn).
These maps define metrics in the space X. Indeed, dn(, y) * O
iff x =y and dR(, y) * dn*Y» *)e Fo1 arbitrary x, Yy, zex,
there exist gl# g2, «36 Gn such that dn(x, y) * d(gl (), )3
dn(y, 2 * d(82(), 32<z>) dn (x" =d(g3(), 93(@))- Then
, g7y)) 1dERBEG), g3()) and d(92(y), S2(z)) £ (d(53<y>,
g3(2))- Hence the inequality dn(x, y) + dn(y, z)£ dn(x,z) holds
DEFINITION 1. Let neN and let e >0. A subset A of X is
said to be (, e)-separated if, for arbitrary x, ye6 A, X vy,
dn(x, y) 2 E* Let S<G* G## n» ¢) denote the largest cardinality
of an (n, e)-separated subset of X. Put

s(@G, G,, e » lim sup- log s(G, G1, n, e).
1 m< n

DEFINITION 2. A subset B of X is said to be (n, e)-spanning
if, for any x e X, there exists ye B such that dn«x*Y) < e*
Let r(G, G, n, e) denote the smallest cardinality of an (n, e)-
-spanning subset of X. Put

r(G, G., e) = limsup - log r(G, Gn, n, e).
1 n-» n 1

PROPOSITION 1. We have 1im,r(G, G,, ¢) = lim,s(G, G,, e).
e-*0 1 e->0 1
Proof. Very similar to that in Remark 5 ([4], p- 169).
DEFINITION 3. The topological entropy of a pseudogroup G
with respect to G. equals h.(G, G.) = lim.r(G, G,, e).
a 1 E*0 1

REMARK 1. [If metrics d and d* on X are equivalent, then
hj(G, G.) = h(G, G.).
k

k
PROPOSITION 2. Let X, * LJ u. (respectively, X, = L) V.
k 1 i=l 1 1 i=l 1

and X = 1J (Ui x V])) be a compact metric space with a metric

d® (respectively d* and d) and let F (respectively G and H) be
a finitely generated pseudogroup of maps of the space X (res-
pectively X2 and X) generated by F1 (respectively Gx and H1). If
the metric d is defined by d((xXIFf y», (X2, y2>)- max {d’x1 x2),



d'(Yi, y2)} and, for any h t Hj, there exist fe6 Fx and gc Gx
such that h = f x g, then

hd (, Hx) i hd-(F, Fx) + hd,,(Q, Ox).

Proof. LetneN and let e >0. Let A= Ikl A., A.c u<,
be an (h, E)-spanning subset of (Xi’ d) K such %ﬁé\t lcarcli Al*
*r(F, P., n, ¢ and similarly, letB* 1IJ B,, B.c V,, be an
(n, e)-spanning subset of (X2, d") such I;:kl1atl card B = r(G, Gx,
n, e). For any (X, y) e x, there exist x*e A and y*e B such
that dn(x, xx) < e and djj(y, y1) < E. We have dn(%, y), i,
yx)) = max (dch(x, y), KIF yj)): he Hn) = max{d(h~ o"TTT"o

hn, y), hxo ... o hn(xIf YJ)) : e Hi} $ max {d(fj o

.ofn) * Iggo ... ogn) X, V), (fxo ... of O ... 0
gn) i, yx>>: e Qe =max {H{ (X o 77. 0y X,
(xo ... ogn) M), ((fro ... ofn) (xx), (@ O ... o gn)

yxN I fi e Fx# gA e Gx) “ max {max @"(FX), ? (X))), d"@®),
g(yl))}: fe FR,ge Gn) < e.

So, we can see that the subset C =~ Al * Bi* is ™n" E) sPan-
ning in the space X, d), hence the minimal cardinality of an

(n, e)-spanning subset of (X, d) 1is less or equal to card A =
e card B, 1i.e.

r(H, H¥# n, ¢) < r(F, Fj, n, € s@G, G n, e).
So,
r(H, Hr ¢) <r(F, Fx, ¢) + r(G, G™ &)

and, finally,
hdH, Hx) * hd-(F, Fx) + hd,,(G, G1).

2. ENTROPY OF A FOLIATION

The basic definitions and properties concerning the geometry
of foliations can be found in [2] . The notion of the entropy of
a finitely generated pseudogroup can be applied to the theory of



foliations, namely, to t: space o plagues of a foliation and
its holonomy pseudogroup, ,

Consider a compact XUemarinian manifold M, <,,,>) with the
metric d obtained from the Riemanniam structure and a
foliation F of M, dimi *p, codlm F»gq, p+qg=n" dim M

DEFINITION 4. Let F be a foliation of M We say tat, a fi-
nite covering U of M by closed distinguished sets is nice if
the following conditions holds

1) for any U e U , there exists a distinguished chart

u* *rP{l) xDg) such that U" is open and U c U;

2) for arbitrary distinguished charts =R.n, /2* 0N Fa*
each plaque of Uj intersects at most one plaque of Uj;

3) a plaque of 0™ intersects a plaque of Uj iff the corres-
ponding plaque in intersects the corresponding plaque in ;

D if Uye U and n U2 to, then int Ujn int U2 is
non-empty and connected;

here, Dk(r) denotes the open ball of radius r and centre O in Rk.
0. Reeb in [3] proved the existence of nice coverings
of foliated m&nifolds, he showed that, for any locally finite

covering V. of M, there exists a nice covering w» of M subordina-
ted to U .

Let X be the space of plaques of a nice covering U - {Uj,
oce> , that is,
k
X = L u./~

=1 1

where points x, yc M are equivalent (x ~y) iff there exists
ie {i, K) such that x, y e and x, y belong to the same
plaque.

Let p be the Hausdorff metric in the space Xs

pP-- 0) * sup infF d(x, y) + sup inf d(x, y)

x«P Y y e Q xe.P

for arbitrary plaques P, Q e X, In th« compact metric space (XF
p), we can consider the holonomy pseudogroup Ka of the foliation
F. This pseudogroup 1is generated by the set 1 =4{h™; 01, j«
e {1, ..., Kk}, n t 0), where, for plaques P, Q e X, h"j(P)
=Q iff Pc I, Qc U andPng”™o.



DEFINITION 5. The topological entropy of F with respect to
a nice covering U is defined as hp(H, H;ﬁ_ﬂ) and denoted by hP(F,TU

IT metrics px and p2 are determined by Riemannian structu-
res, then they are equivalent, so hpl@, U ) = hp2(F,W) and that
is why we can write h(F,U) instead of h , U).

DEFINITION 6. We say that foliations F”and F2 of a mani-
fold M are transverse if, for any point pe M, we have

TpRi + TpFp = T,

DEFINITION 7. Let P and F2 be transverse foliations of a

manifold M, dim M = n, codim Fx = k, codim F2 = 1. A chart *
on M

0 = C# *2" ¢s’8U >IRM"1"k *R 1 *RKk
is bidistinguished with respect to Fx and F2 if each plaque of
Fx contained in U is described by the equation 3 = const.,

while each plaque of F2 contained in U - by the equation <, =
= const.

THEOREM. Let (M, <.,.>) be a compact Riemannian manifold,
Fj and F2 - transverse foliations of M. The family PF'n f2 of
connected components of intersections of leaves of foliations Fj
and F2 is a foliation of M such that

™ h(Fxn 2,2 < h(F1, 2) + h(F2, 2)

for a nice covering 2 of M which consists of the domains of
charts bidistinguished with respect to the foliations F: and F2-

Proof. Let Fx and F2 be transverse foliations of M,
dimM =n, dim P> = p», codim P =g, 1 =1, 2. Using Frobe-
nius theorem, we iImmediately obtain that the family F3 = Fj o F2
is a foliation of M.

Consider a pair of charts u, —*Rp_’ » Rq" and #.: V. »

‘*sz leA2 , peU~nvj, that are distinguished for and3F2,
respectively. The map x » (P2*iix), "2”"j<x))» where the maps

Pi 9i n Pj 2 2 - - -
P2:R ! XR ' R , p2:R . XR R are projections, 1Is a



submersion. Each fibre of this submersion Is contained in a leaf

n-q,-q2 q,+q2
X R

of * n F2e Take a chart X: *R , pe 0

Ui n Vy which Tflattens the fibres of that submersion. Then
the map x @ (p™MIx), p2$ (X)), p~jfx)) 1is a chart distinguished

with respect to the foliations , F2 and F3 and is defined in

a neighbourhood of the point p, the map p,\:Rn_ql'qz « RA1HA2 &

n-q,-q2 o
XR being a projection.
Therefore, we can consider the family of maps O0": »
n-qi-q, ?
»R qar-q xRpp qu , k*1, ..., m,, such that 0" 1is a chart
distinguished with respect to the foliations F~ F2 and F3,while
the sets cover M. To the covering w= {W, ..., Wmn }we can
subordinate a covering 7 = (T,, -.., T_ } of M nice with respect

to the foliation F~. To the covering 0' we can subordinate a co-
vering 2 * {Z~, ..., Zm) nice with respect to the foliation F2-
The covering 2 is nice with respect to the foliations F” F2 and
Fj. The maps restricted to the sets of the covering Z are
charts distinguished with respect to the foliations F, F2 and

F3*

Consider the spaces , X2 and X3 of the nice covering Z =
= {Z~, ..., zm}, determined by the foliations F1, F2 and F3 res-
pectively.

m
So, Xj = _(JI Zj/R.‘E where foj‘y iff there exists ie {1, m)
1=
such that x, ye Z2& and X, y belong to the same plagque of the
foliation Fj, j =1, 2, 3.
Take plagues P1e ZW.~ and P2 e Z*Rj. Then, using the form
of the chart o”, we obtain

P1 = {xe ZL: P2ssi (X) a},
P2 = {xe ZL: P2"(x) = b),



Pi fi P2 = {at 6 Z”™ P2*i(x>=a and ?27] = b>= P3
for somve aeRI' and be RUZ

So, the set P3 = Px n PE is a plaque of the foliation Fj.
Conversely, with a plaque P3 e Z°R-j given by PjJ = {x e 2
:pMfx) =a and PjNix) = b} we can associate the plaque
Px = {x e Z": p2<(x) = a} of the foliation ™ and the plaque
P2 = {xe 2 RjitjixX) = b} of the foliation Fj. In this way we
can identify the plague P3e ZR™ with the pair of plagques
(P# P2)e Zi/R1 » Zi/R2. Therefore,

m m
X, = M Z,R, = _ | @./R* v Z./RY).
= 1=

Denote by Fz x (respectively, Gz x and Hz x) the finite set

of generators of the holonomy pseudogroup F (respectively, G and
H) of the foliation Fx (respectively, F2 and F3) with respect
to the nice covering %.

Take hije Hz r Then hi;j(P) «g iff Pc Zj, Q ¢ z™and
PnO 0. Remembering that P = (Px, P2) and Q = (Qx, Q2> where
Pxe Z1/R1, P2 e ZjRj, X e Zj/Rx, Q2 e Z}/R2, we obtain

hij((I" P2n = 01" <2*= (fijPI>" gij(P2n =

(Fij x gij~ PI" P>
where f+j € FzI1, gLje Gz V

Take iIn the spaces Xx and X2 the Hausdorff metrics and
r2 determined by the Riemannian structure of M and, in the space
Xj, the metric p3 defined by the following formula:

pP3((XI" x2)" (YI" Y2)) = maxtpx(x1, YX), p2(x2, Y2)}
Then, using Proposition 2, we obtain

hpsH, HZFI1) < hpiF, Fz 1) + hp2 (G, GZFI).

So
h(FL n F2,% ) < h(F1,%) + h(F2,<Z).



REMARK 2. The equality in (*) need not hold. The following
example shows such a situation.

Example. Let T=D2xS1={zxe C: |z]|S 1} x {z2
e C: |z21=1}. Take the map j: T T given by the formula

Je2L,i0, e2l,i*) =(] e2*1* + \ p e2"10, e4,,i*).

The compact manifold T\ j(@) 1is foliated by the surfaces given
by the equation z2 = const. The components of the boundaries 3T
and j(3T) can be identified by j|3T. In this way, we obtain a
foliation P of a compact manifold M3 - Hirsch®"s foliation.

Let F2 be a foliation transverse to F~, dim F2 = 1. Take a
covering U nice for the foliations Fx and Fj. Since the folia-
tion F~* n F2 consists of points, therefore h(Fj nF2, ) = o,
while hfFj, U ) >0 (see Example 4.2 in [I]). Thus

h(Fx n F2, U ) < h(FI# U ) + h(F2,U)

in this case.
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Andrtt) Bii

EMTROPIA TRANSWERSALNYCH FOLIACJI

W prezentowanym artykule zostata wprowadzona nowa definicja  topologicznej
erttropil. Definicja ta roini sie troche od definicji topologicznej entropii
follacjl podanej przez E. Ghya, R Langevln i

i P.Walcz a
k a [1]- Jednakie, dla dowolnej foliacji F, topologiczna entropia follacji

F zdefiniowana w [1] Jeat mniejsza bfldi réwna topologicznej entropii

folia-
cji F zdefiniowanej w tej pracy.

Dla transwersalnych follacjl Fj 1 F2 szaco-
wana jeat entropia foliacji P PN\



