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SOME EXTREMAL. PROBLEMS IN THE CLASS 
OF HOLOMORPHIC UNIVALENT FUNCTIONS

Let S'(b), 0 < b < 1, denote the class of functions of the form
00

F(z) « z + 2Ü a zn, holomorphic and univalent in the disc |z | <1, sa- 
n-3 n

tisfying the condition |F(z)| < b * and let G( u) « Z  c. denote
k-1

the function inverse to F.
In the paper the estimation of some initial coefficients of G as well 

as the estimation of a5 in S”(b) and in the odd subclass of S’(b) are 
given for some b from the Interval (0, 1).

1. INTRODUCTION

Let S(b), 0 < b < 1, denote the class of functions of the
form

CO

f(z) = b(z + £ a zn), (1)
n=2 n

holomorphic and univalent in the disc D = (z: |z| < 1} and sa~ 
tisfying the condition |f(z)j < 1.

Denote by S'(b), 0 < b < 1, the class of holomorphic-unival- 
ent functions of the form

to

w = F(z) = z + £ a zn, z e D, 
n=3 n

satisfying the condition |F(z)| < b * and let
kz = G(ui) = X cvii) 

k=l K
denote the function inverse to F.



Recently many authors (e.g. [31, [4 ], [9]) considered the pro
blem of coefficient estimations in some classes of functions in
verse to classes of meromorphic functions. I n [ l ] L a u n o n e n  
estimated coefficients of the inverse functions of S(b) applying 
Fitz-Gerald-Launonen inequality.

In this paper the estimation of some initial coefficients of 
functions inverse to S'(b) functions will be considered. The I,au- 
nonen method and the Power-inequality will be used.

2. THE ESTIMATION OF THE COEFFICIENTS c3, C4, Cj, c?, cg

It follows from the connection between the functions t, F and 
G that

Cj = 1,
c2 = °,
C3 = -a3'
c4 ~ _a4'
°5 = ”a5 + 3a3

The estimation of c3 and
estimation of a, and a.o 4
From [7 ] (p. 265) we have 

lc3l = Ia3I S 1 - b2

(2 )
c4 follows then immediately from the 
in the class S(b) in the case a2 = 0.

(3)
and the equality holds for the function G„ which is inverse too
the one satisfying the equation

F.
1 + b2F2o 1 + z"

(4)

From Grunsky-type inequalities which are sharp in the con
sidered case a2 = 0 ([5 ]) it follows that

re a4 < I (1 - b3) - ‘“S1 2
2(1 - b) 5 3 (1 b3).

The equality holds for â  = a2 = 0 and the extremal function F̂
is defined by



Thus
|c4| s | (1 - b3)

with the equality for the function inverse to F̂ .
In order to estimate next coefficients we apply the Launonen 

inequality [11. The inequality for every function z = G(ki) in
verse to S'(b)-function has the form

\SS Ji(ui)v(s) - ^ '"3 duds | S
YY

<//y(U)^7) Giil -- L — .¿jgjL. duds, (6)& u  uiwiHi a) S ] . .  G(<D)GTsj
where y is a closed analytic curve and y is a continuous weight 
function on y. For y(w) = w”3 (6) takes the form

|-4*2c5| S 4tt 2 ( |c3 | 2 + 1 - b2).
Thus by (3) we have

|c5| g |c3|2 + 1 - b2 S 2 - 3b2 + b4 (7)
The maximum is reached by the same function as in the case | c^ | 
i.e. by the function inverse to Fe.

For y(w) = (i)-4 the condition (6) yields
|-4tr2c7| S 4tt2 ( |c412 + |c3|2(4 - b2) + 1 - b2),

from where
|c7| S |c4|2 + |c3|2(4 - b2) + 1 - b2 (8)
In order to estimate this we apply the area inequality for 

the class S(b) ([7], p. 182):

Z v|o - b2a j 2 â 1 O)
V =  1

where

= ‘  * f >0 1101
From (1) and (10) it follows that

“l = _a3' a2 = -a4'
and as the consequence of (9) we have



|-a3 - b2|2 + 2|a4|2 S 1, 
and by (2)

|c4|2 s | (1 - |o3 - b2|2) (11)
The inequality (8) takes then the form

|c7| * } - ± |c3 - b2|2 + |c3|2 (4 - b2) + 1 - b2.
-1 " k-1 k The rotated function t G(tu>) = u + x: t cvw , |t | = 1,

k=3 K
preserves |c7| and allows the normalization c3 S 0. Denoting

x = c3 g <-(1 - b2); 0> and P(x) = (| - b2)x2 + b2x, 
we have then

Ic7| < | - b2 - | b4 + P(x).
Require

P(-(l - b2)) = (1 - b2) (b4 - b2 + j) i P(0) = 0.
This yields

max P = P(-(1 - b2)) for 0 S b S bQ, 
where

bQ = | (11 - /g?)1/2 = 0,856992160... (12)

is the root of the equation b4 - ^jb2 + ^ = 0. Hence for 0 S bS 
S bQ the sharp estimation holds

Ic71 S | - b2 - A b4 + P(-(l - b2)) = 5 - 10b2 + 6b4 - b6.
As in the case |c5| the coefficient |c7| is maximized with
|c, | i.e. by the function inverse to F„.J o

In the case p(u) = w-5 we can proceed similarly. From (6) we
have

Ic9| S (9 - 4b2)|c3|2 + (4 - b2)|c4|2 + |c5|2 + 1 - b2,
from where by (7), (11) and the fact that again we can assume 
c3 £ 0, there holds the inequality

ICgI £ \ (1 - b2)(8 + 3b2 - 2b3 - b4) + xQ(x), 
where

x = c3 e <-(1 - b2); 0> and



and
Q(x) = x3 + x(9 - b2) + b2(4 - b2).

Since Q'(x) > 0 for b e (0, 1) and x e <-(1 - b2); 0> then the 
equation Q(x) = 0 can have only one root in the interval 
<-(1 - b2); 0>.

Require
Q(-(l - b2)) = - (1 - b2)(-b6 - if b4 + ^  b2 - 10) ¡> 0.

This holds for 0 < b S bj, where bx = 0,843285210... is the root 
of the equation

-b6 - b4 + ^| b2 - 10 = 0 (13)
Hence for 0 < b < bx the sharp estimation

|Cg| s 14 - 35b2 + 30b4 - 10b6 + b8 
holds. Again with |c3| also |cg| is maximized by the function 
inverse to F0.

So we have shown
THEOREM 1. For every function

kz = G(<i>) = £ cv(o , 
c=l

inverse to S'(b)-functions, the estimations
C3| S 1 - b2, b e (0, 1),
C4I S f  (1 - b3), b e (0, 1),

C5I < 2 - 3b2 + b4, b e (0, 1),

c71 < 5 - 10b2 + 6b4 - b6, b e (0, V
C9 1 < 14 - 35b2 + 30b4 - 10b6 + b8, b e (0, bl>

hold, where b is given by (12) and bx is the root of equation 
(13). Except for |c4| the function inverse to FQ defined by (4) 
is the extremal one. In the case |c4| the extremal function is 
the one inverse to Fx given by (5).

3. ON THE ESTIMATION OF a5 IN THE CLASS S'(b)

From the Grunsky-type inequality for a5 for which &2 = 0 
(see [2], p. 473) we have



2 re a, - (1 - b4) < ( 3 ---- * 3v2 (14)
5 In b 1

2where we denoted a, * u + iv. Provided 3 - ---- sr £ 0 what im-
3 In b

plies two cases
_ 2

a) 1 ----- -— r- <0 <=> e 3 < b < 1,
3 In b"1

_ 2
b) 1 ----- -— r = 0  <=> b = e 3 (15)

3 In b-1
we obtain

re a5 g | (1 - b4).
In the case a) the equality in (14) holds for u = v = a3 = 0. 
In the case b) it requires v = 0 but u is left as a free para
meter .

As the rotation t -1F( t z ) preserves the class S'(b) we can as
sume that a5 = |a5| > 0 and re a 3 S 0.

In order to study the equality cases in (15) put a2 = 0 in the 
inequality (82), p. 472 of [2]. We obtain

re (In bx2 + a3x2 + a5 - a2 + 2a3xQ + 2a.

g(l - b2) |Xl |2 + | (1 - b4),
where x , x1 are free complex parameters. Since, in the normali-

1 4zed equality case of (14), a5 = j (1 - b ), v = 0, the above in
equality takes the form

re (In bx2 + ux2 - | u2 + 2u x q + 2a(Jx1) < (1 - b2) | |  2 (16) 
Putting xQ = 0, xx = IxjJe*1*’ in the case (a) u = 0 we have

2 re (ei*a4) < (1 - b2) ¡x^2

what with 0 < |x^ | -*• 0 gives re ( e ^ a 4 ) g 0 for <t> e <0, 2ir> 
which implies a4 = 0.

In order to prove that also in the case (b) a4 = 0 it is suf
ficient to put xQ = | u, xi = lxxlei'*’ in the inequality (16) 
and tends with |x̂ | to zero.



So we have shown '■a.e.t in the extremal cale all the coeffi
cient s up to a5 are real. From the Power inequality it then foi 
lows that we may use condition (35), p. 488 in [é]:

2x In bF + b2(b2F2 - b_iF'2) ■ 2x„ In z + z2 - z-2, o o
2x_ = a, = u S 0 (17)o i

In the case (a) in (16) u = x = 0. In the case (b) the extremal 
case can be studied by aid of the boundary correspondence. For 
that purpose let us put in (17) z = e1*, Fie*1*1) = r($)ei'*,̂ , and 
compare the real parts.

4
u In br + e ^ cos 2i|»(btr2 - b 2r 2) =0, 

from where
4/3.. . 4/3 u lr. br , -ue,/Jcos 2i(j 0 -e “2~2-- 7 T 7 = I > 4b r  - b r r -► b

what implies the limitation for u:
_ 4

-4e 3 g u < 0.

So we have proved _ 2
THEOREM 2. In the class S"(b) for b e <e 3; 1) the estima-

tion
|a5| S \ (1 - b4)

holds. The equalit holds for the function given by (17) where
_ 2 4

x = 0 for b e (e 1) and arbitrary x„ = u e <-4e 3; 0> for o o
2" 3b * e

4. ON THE ESTIMATION OF a& IN THE ODD SUBCLASS OF S(b)

- 2/3
The problem of estimation ag for b e (0„ a ) remain 

open in the class S'(b) but we solve the corresponding question 
in the odd subclass of S'(b). We will use the well-known £&ei 
that if f(z) of form (1) belongs to s(b) then



f(z) = Jt (ẑ ) = b(z + a3z3 + . .. ),
1/2is an odd function from S(b ' ) and the connections 

b = b2, a2 = 2a3, a3 = 2a5 + a2 
hold.

From the Power inequality in the class S(b), [8] we have
2

re (a3 - a2) g 1 - b2 + yjpg, where U = re a2„

and the equality can be reached if |U| s 2b|ln b|. In the terms 
of odd S(b) functions it gives

~ ~4 ~2 (re a3̂2 re a, - (1 ■ b’| < 3 re a, + « ---- 5—  =
 ̂ I n F

= (3 + .* )u2 - 3v2 < (3 + — —̂ 5)\x2 = M(vJ),
In b£ In b

where we denote a3 = u + iv. Equality holds for v = 0, and if 
2~ “ fb 6 <e ; 1) we obtain former estimation

rsf 1 r>l 4re a5 < ± (1 - b4).
_ 2

If b e (0, e and |u| < b2 | In b2| we have an estimation

M(u) § (3 + -- rr)b4 In2 B2 lnb2(4 + 3 In i2) (18)
In b

For |u| > b2|ln b21 what is equivalent to |re a2l = |U|>2b|ln b| 
from [8], p. 17 we obtain

re (a3 - a2) < 1 - b2 - 2 |U|a + 2(o - b)2, 
where a e <b, 1> is the root of the equation

u In o - j t b + JyL = o.
In terms of S'(b) it means that

2 re a5 - (1 - b4) < 3(u2 - ?2) - 4|u|o2 + 2(cf2 - B2)2; 
cr2 = cr e <b2, 1>,
| u | = - (cf2 In a2 - a2 + b2).



So, for b2 I In b21 g |u| S 1 - b2,
2 re a5 - (1 - b4) s 3u2 - 4|u|o2 + 2(o2 - b2)2,
|u| = -(a2 In 32 - a2 + I2), 

with the equality for v = 0. To estimate the upper bound, return 
for brevity to the variable o:

2 re - (1 ■ b4) g 3(o In a - a + b)2 + 4a(cr In a - a + b) + 
+ 2(a - b)2 = M(a), b2 = b § a < 1. (19)

Since o = a(u) e <b, 1> is uniquely determined by
|u| 6 <£2|ln b2|, 1 - E2>

([8], p. 15), then it is sufficient to maximize M(a) for a e 
e <b, 1>. Since

A = 2 In a(3a In a + o + 3b)do
the considered maximum is reached for the root of the equation 

3o In o + a + 3b = 0
_ 4

which belongs to the interval <e 1>, what by (19) gives

re a5 i | (1 - b4) + (a2 - b2)2.
Since the maximum of Mfu) in (18) equals to M(o') we have maximi
zed re a5 and hence |a5|: ^

THEOREM 3. In the odd subclass ofS'(b), be (0, e 3),
|a5| < | (1 - b4) + (a2 - b2),

_ 2
where a e <e 1> is the root of the equation 

3o2 In a2 + o2 + 3b2 = 0.
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Henzyka Siejka

0 PEWNYCH PROBLEMACH EKSTREMALNYCH 
W KLASIE FUNKCJI HOLOMORFICZNYCH I JEDN0L1STNYCH

Niech S(b), 0 < b < l ,  oznacza klasą funkcji postaci
OO

W “ F(z) « z + 2  a zn, nn“3
holomorficznych i jednolistnych w kole |z | <1, spełniających tam |F(z)|<
< b * i niech funkcja

OB

z ■ G(u>) * £  c, u*' 
k»l K

będzie funkcją odwrotną od F.
W prezentowanym artykule otrzymano oszacowania współczynników ĉ , ĉ , ĉ ,

c_, c„ dla pewnych b z przedziału (0, 1), Ponadto otrzymano oszacowanie współ- 
- - 9  / oczynnika a,, w klasie S (b) dla b 6 <e , 1> oraz w podklasie funkcji niepa-

“2/3rzystych tej klasy dla be (0, e ). Stosowano metodę Launonena oraz pewne
nierówności potęgowe (Power-inequality).


