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ON BIASED REGULARIZING ESTIMATORS. PART I

1. INTRODUCTION

We will introduce some subclass of bilased estimators for the
parameter vector 8 in the following linear models:

Wl = (™K, 8,y = x8 '+ 2, k,* k., n_ =n, P, -dr'y(xa,dzx)),

arm;'- (R™%,8,y = x8 + 2, k_ < k, n, = n, P, -xy(xa,d"'x)){

Nl = (ﬂ.“'k.s.v X8+ 32, k. =k, n_=n, PY -«’Y(xs, Q)),

o
*u;,_ (anlk",y =X8+3Z, k, <k, n =n, PY -:X‘Y(XB. Q)),

sy = (™K, 8,y

X8 + 2,k =k, n <n,9y-sxy(ia,n)),

s.ms"‘- (*™% 8,y = x8 + 2, ky < k, n < n, Py = s (x8, Q)),
where:

R K _ 2 set of real Axk matrices,

s - a complete probability space, & = (U, %,9), -

U - a set of elementary events, ¥ - the Borel o ~field of
subsets of U, ® - a complete measure with P () = 1,

¥,85 (U, F) -—_*(R"').?Rn)c 0 A

*Lectqrer, Institute of Econometrics and Statistics, University of rdd#.

(a7}
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xe®™*, se®*, x, k, ngon, o®e® rank (X)=k,, rank
((¥)) = ng, e(y) = x8, »(y) = 0’1 (or Q), ¢ and ® are
expectation and dispersion operators,

Py = sx&(xa,;x)# read as "probability distribution of Y is
a singular multidimensional normal distribution with mean vector
¢(¥) = X8 and dispersion matrix R(¥) = Q" (note that singular-
ity of 9! comes from n, <Ny,

Let B, denote the l-th biased estimator B of the vector
8. The word "biased" will he understood in the sense of

et inileion 1. The estimator 51 is biased estinm-
ator of 8 1if €(B)) =8 #0, O e®%, 1 1is an identifier of
the analytical form of estimator.

Using Definition 1 we can defin; the total bias as

2
TBIAs(Bl) = |} ‘e(nl) - BIL°,

where || » M2 denotes the square of euclidean norm of a given
vector or matrix. &

One can distinguish two groups of causes for the biasedness
of a given estimator. The first group is resulting from the mo-
del assumptions: ; /
al) under k < n we can assume ko <k or n, < ko'

a2) a shift in the mean vector of ¥, i.e., an atypicality

o
(outliers) shift DS N VEE SRR USRS B R e
{ ieN
is the set of indices for typical results of observatiqns; Nm
'is the set of indices for atypical results of observations gene-

rated by

Kol g -(ﬁ“"".s,! =x8% ) B3, +2, k, =k, n =n,
teN, »

Py =orY(xa + Z piji,dz;)),'

iiNm

where j1 € Rn is the unit ‘vector with 1 at the 1—th~coordina-v
te of jlg )
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The second group of biasedness causes is resulting ¥rom the
estimator form.' An obvious example is a ridge estimator of the
form B(c) = (X'X + cI)-1x'¥, ¢ €« ® which under o'db, is biased
since ¢(B(c)) # 8.

2. ON CONSEQUENCES OF BAD-CONDITIONING OF X'x

In § 1 it was shown that , B(c) is biased due to its analy-
tical form. Before giving a justification for using such a kind
of estimator we must first understani some numerical points of
error analysis. We first recall that under d(’d&o the l.s.e. of
B is the solution of homogeneous system of equations %% = 0,
Qg"- 1Y - X812 . This solution can be written as:

(o)

o = X'y or under det(X'X) # O,

(1a) x‘xaé°) = X'y, X'X b

(o)

(1b) aé°) - (x'%)7'x'Y, b, . (x'x) 'x'y.

Using singular value decomposition of matrix X, i.,e. X =

= uAvs Uue®™k, ve fk*%  yuwy - I, = V'V =V we rewrite (1b)

as:
k

(1c) - aé°) R 7 DN v SR T
i=1

or its sample value analogue
k

(1a) b= vA™ v’y = > %; vV,,Uy.
i=1

The l-th coordinate of vector bgo) is

n

X
1
(1e) Bo,1 ® Z % i Z Mpg¥ers: 3 = Xy 0wy A
i=1 t=1
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Suppose now that 31 > 22 TR ?‘k' 0 < A‘k £ 0.01 and other 7‘1 >
21, L =1, ..., k=1. In this case the only part of (1e) which
makes a large increase in the value of bo 1 is

- '

n
1
2 1k Z YixYy
k e

due to the factor 7&;1 (for instance 1if A, = 0.01, then 5\;1 =
1 1

k. = 0.0001, then 1;1 = 10 000). This increase

2 2

is especially big if

= 100 or if A

n
vlk Z ujkyj >1
=1

which is the usual case for non-standardized data.

Until now we have discussed the situation of lack of meas-
urement errors. Let us assume now the existence of such errors
in the process of measurement of Y. Let y, =y + £, and g =
= (g“, cesy ;k,n)' be the vector of measurement errors with

respect to the unobserved vector y. We assume that the size of
total measurement error is W § Il 2 . T yu2 . Under (1a) and
Yy =y + &, we obtain X'X(b, + §,) = X'y + X'§, and hence

(2a) X'X§, = X'E,, §,€R, §,€6 R" or
A o
(2b) B = (x'x)"x'g*- vA o', = Z ij'. VYl
: i=1

Let us consider the simplest case of a change in the meas~
Il
urement error, i.e., £ = E,+ A%, A, = (g“. 0, «.., 0). Then
- '

ag 1 VA-1U'§* ’

k : k

z 'k{ 404 & Z i'i VyUiaE, = §, + Z J'A'{ U318 K

t=1 i=1 i=1
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‘ K Xy
® 1
(3a) L REBIE Vatig ey = 2 Tag e
=1 =

or for the fixed l-th coordinate of Aé* we get

Sl
] %, 1
(3p) 84,1 = 5 —'—-_11 MygVige L= 1, ooay ke i
i=1

The increase in the measurement error of Y, by g*', due
to the existence of bad ceonditioning (expressed by, for exam-
ple, the fact that 0 < A < 0.001) is especially magnified by the
factor 1;1. Under other conditions unchanged if g*’1 = 0.1 and
A, = 0.001 we have g*'1 A;‘ = 100 times amplification of the

value u,. v in the value of Aﬁ . This increment is espe-
11714 * 1

cially big for Uiy > 1, Vi.

We have made some efforts in explaining the size of influ-
ence of measurement errors and bad conditioning on the size of
solution error for the system (1a). 1In practice one should have
ways of measuring the level of bad conditioning in X’X in or-
der to make assessment whether we really have this phenomenon
or not, The most popular measures are

’
(1) _ Auax® X), A(X’X) is the eigen value of X'X,

(4a) Vyrx = 7;;;7§T§7

(4b) v,(‘?,)( ® Puax LIRS a7y, an = [Ia“l]:’jﬂ. A= X'X,

Amax(lhllh-1l) is the maximum eigen value of the product of

matrices A and A"1 modulus. The measure . v&?} is called the
minimal size mcasure of bad-conditioning of A, )

k k
(3) 5 Suit -t ¥
(4¢) Vyiy = max .Iaijl max ‘ laijl. A = [“1j11 A
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(4)
(4a) Vos, = k max | a,. | max|o, .1,
i $ X ilj 13 1lj 1j

1/2 1/2
(4e) v)((?,)( - k™! <Z afj> (Z afj> g e gt
1,3

1.3

For orthogonal and orthonormal matrices X’X the considered

measures {vifil, i=1,2,5 all take value 1, i.e., vi?i =1,

(1)

i =1,2,5, For singular matrices X’X the measure vx,x takes

(0 _ ;
value Vy,y =® since A , (X'X) =0 (other measures, for det

(X'X) = 0, are not defined). The problem .of determining the

threshold value (level)of véf; for which the matrix X’X is to

be bad-conditioned is not generally solved. There is a view
that this level should be linked somehow with the measurement
erxrors of X and/or y.

One approach (proposed by Lanczos [3]) is to use a
kind of iteration procedure the iterate function of which
depends directly on the fixed level of v;,x. The second ap-
proach is based on the use of regularization principle build-in
to the estimation criterion function. The rurpose of this re-
gularization is to smoothe the range of estimation quality func-
tion because of bad-conditioning of matrix qu or large meas~
urement errors in y. The estimators derived under the reqgul-

‘arization principle are called regularizing estimators. They
are relatively robust against bad-conditioning (or in more ge-
_neral setting against ill-posing the problem of solution of

operator equations) ' or/and measurement errors. If we include the
autocorrelation matrix into an estimation criterion function,
‘then the estimators derived  from such a function would bhe re-
litively robust against autocorrelation. The described two ap-
proaches do not change the specification list of explanatory va-

riables (columns of X) in order to reduce the influence of 3§
bad-conditioning (strong correlation) in X'X can have on the
golution errors of la. We assume that in the situation when

such a list is given on the grounds of outside statistical rea-
sons (the assumptions of tested theory of some part of science)
these approaches are fully justified. Other approaches which
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include dropping some strongly correlated variables will not be
analysed. L

In this paper we will present ‘the formal characterization of
ill-posed linear model estimation problems and the derivation
of solving regularizing procedures (estimators).

3. SOME CONCEPTS OF ILL~POSED ESTIMATION PROBLEMS IN THE CASE
OF GENERAL LINEAR MODELS

-

Let A = X'X, 2.=X'Y, 2 1 (U, s)—*(ak,sk). z=X'y, z¢€
eR* be a sample value of 2,% = (Rk,e k)‘ Then the system (1a),
R

being an implicit form of the estimation problem

(5) min WY - xan?,
8

can be written (for the sample-value case) as
(6) Ab = z,
For (6) we can formulate the following definition:
Definition 2. The problem of solving (6) is well
gosed on a pair (8B, %) of metric spaces if:
a) for each 2z € & there is a vector b € B being a solution
vector of (6),

b) vector b is the unigue solution of (6),
c) the problem of solving (6) is stable on (8,%), if

(1) ve>03 8 (e)>0Vze&(vz € Fip.l2,,2)) <8(E))=>
: ==>(e#(b1.b2) < E)

2.2, € g, byb,eB, z,#2z,, b # bz'Eg(ES) is a metric
in the space & (or 8). ¢

De.f it iaomn 3. The problem of solving the system .

(6) is 111-posed if it is not well-posed, that is, 1if one (or
more) of the conditions {a,b,c} is (are) not fulfilled. ¢
Definition 4. The estimation problem (5) is i1l1~-

-posed on (B,%) if the problem of solving (6) is ill-posed on

(8,%). &
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Remarks on Def. 2:

r1) checking the condition (a) 4in Def. 2 consists in check-
ing the inconsistency of (6), i.e. whether b € R(A), R(A) =
= {(zeX: Ab=2, b€B, & :B—¥), where A 1is a linear map-
ping (operator) of ® into & or whether the rank (A) = rank
(A : 2z) for A being the matrix of operator ¢ ;

r2) checking the condition (b) of Def, 2 consists in check-
ing whether det(A) # 0;

r3) the truth of (c) in Def. 2 depends on assumptions about
the metric spaces B, ¥, forms of metrics EQ'QS' values of £,
8(e);

r4) the concept “stability of solution" wused in (c) of Def.
2 is equivalent to the concept "uniform continuity of solution
b on X", where be A®z, A”: ¥ +8; “"stability (uniform=-
=continuity) of b with respect to 2z" will be also called "sta-
bility (uniform-continuity) of first kind";

r5) limited applicability of the concept "stability of the
first kind" (for (6)) results from the fact that it “catches"
the cases of small changes in 'z€ & but it does not catch the
small changes in A;

r6) from the definition of metric Py (2442;,) and Ab = ‘2
we have 52(21'22) 'Eg(‘Abv bz); for 93(21'22) =1z -z, n2,

it 1s easy to show that 11z, = 2, 1% =i & (b, = b1 2 < W

* b, - byl 2,

Therefore in metric || » II2 the dependence of distance be-~
.tween z, and z, on the distance between bl and bz and |l II2
is seen immediately. It motives a natural modification of the
concept of stability of the .ur-t' kind. We have

Definition 5. .By stabilityof b on (£ ,d) we

mn such a property of b that

;(s) szezuzeavw 038, (e)>o0 35(s)> o n €A vz e Z:

1(&(1«1.52) <8, (e))a (oglzy,2)) < é(a))) => (es(b1 /b,) € 2F
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Note 1: ACB x & ; stability of b in the sense of Def,
5 will be calléd "stability (uniform-continuity) of the second
kind" (with respect to (A,z)); stability (uniform-continuity)
of the second kind, by A, 1is strictly connected with the concept
of "bad-conditioning of system Ab = 2" or “bad-conditioning of
matrix A".

Dwif Limid gt on 2a. The problem of solution of the
system (6) is well-posed on the triple (B,%,4A) if the condi-
tions (a), (b) of Def. 2 and the condition (8) of Def. 4. are
fulfilled., ¢

Definttran 3a. The problem of solution of the
system (6) 4is ill-posed on (8,%,4A) if it is not well posed,
i.e., one (or more) of the conditions of Def. 2a does (do) not
hold. L 4

Definition 4a. The estimation problem (5) is’
ill-posed on (8,% A) if the problem of solving (6) is ill-
-posed on (RB,%,A). L

Note 2: 1if one changes the assumption of uniform con~
tinuity ((¢) in pef. 2 and (8) in Def. 5) on the assumption of
continuity he will obtain the concept of "classical (or Ada-
mard) well-posed problem of solving the system (6) and using
this modified definition one can arise at Adamard’s analogues
of Def.3, ..., Def. 4a.

The definitions introduced above concern estimation problems
for all the models presented in § 1. g o

4. ANALYTICAL FORMS OF ESTIMATION QUALITY FUNCTIONALS

Among the methods of solving ill-posed estimation problems
there is a class called "“regularization methods", 1In the case
of 4ill-posed prdblem (5) they consist in regularizing the Le-
gendre~Gauss functional ng)

(9) 8 = ny - x8y?= Z ( z X, 4 j>

t=1 j=1
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The least-squares solution of ill-posed problem min@&o)(s)
8

o 1

‘is B, =A 'X'¥, It is non-robust on the existence of (E, N), -
(d,0), (p,d,d)-outliers and bad-conditioning of matrix A,
that is, many of the known estimator Bo performance’s measures
are getting slightly worse. To get rid of these troubles with
robustness there were introduced some outliers and bad-condi~
tioning (or in general ill-posedness) smoothers (smoothing func~-
tions) into (9). They smooth the range of <l>é°). In order to
unify their presentation we write down a distance between Y and
X8 as

(10) ¢° = e§°)(¥,xa).

. where Yy is a metric space with a metric 89' i.e.y =(8", en)'
)

y € R",

In this general netting one cannot find practically meaning-
ful solutions of min Q(° . It is, however, easy to do it 1if
one establishes the concrete functional form of metric ey. The=~

re are, for example, the following options:

n k :
(10a) <I>$°) a Z fyg = z Xe Byl = 1Y = X8)"1+ 1,
t=1 3=1
F n . k - 1/2
(10b) $,(°) - Z 1Y, = Z xtjsjgz ;
L t=1 j" .
N gt 1173
(10¢) $.'°) = Z 3
ot e R
(roa) e R el Y e

. ; K 1/c0 %, V
(100) & = [Z A xtjai'm] B 1?&::”"?' Zu-"tj’i”
t=1 =1 : ; =1 ‘
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T i (o) | . 840) WS
f 2 ’ L4
Skt Ef1 +6$°5 e Ej1 + 4,(05 g Bt + §{°s
' (0) " z(0) ()
3 P, ) (©) _ bia Gy s
&g E{1 + Q‘° * 10 Ej,l + ¢‘g 101y EL1+ Q§°i'

B, 1=1, v+ 5, are corresponding to Qio), 1 =1,5 residu~-

als vectors.

[ n k
Zt if vtizxcjnj, Eo Vs B g VR _
t=1 =1 b
(10 )é(O)
0 if vt-z XyyBy0 oty e 02 1€ ne Ny
¢ j-] L :
: o, (¥,x8) if  p (¥,X8) < 1,
(10h) §(°) ’ ok

1 1t py(¥,x8) > 1,

Tuy-xsu? 1 uv-xen?cs, .
A101) §(°) ,
' 2142
SNHY-X8I1°-=6" 1f HyY-x81°>8, Sek,.

It is seen that the metrics ¢$o)' ng). ng)o §§°) “£9h

' easily genetalized in wr;ting by

t=1

(1) ¢‘°’ [z Y, Z xtj 5t ] . pe(o,ml
'  . One can easily chack'thgtx v : .
1£ P - !l tlien .Qio)l - ng)a ik
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;I.f p = 2, then Q{o)x -ng).
1f p=3, then 3{®: = %),

if p = 5, then Q§°)a -Q§°). ;
| S N
Each of the above metrics gives rise to the formulation of

one estimation problem
(12) m:n @{°).(a), B85 PR gE, |

and derivation of corresponding estimator,

The properties of these estimators are not well recognized
(up to now the relatively richest experimental and theoretical
results concern Béo) - A- X'Y). The results [6] about the per-
formance of estimators B(o) Bgo) show that they are relativ-
ely robust against outliqu.

The estimation quality functionals (10)~(10h) do not lead
to estimators which are robust against autécorrelntion'ln 2 (as
it is introduced in the models ', dt‘é&;', s’ S Sdl'dl;K ). The-
se functionals do not contain expressions which represent the
autocorrelation in 2. Before going to some detailed proposi=
tions it must be noticed that autocorrelation ralationsh;pl
should somehow "weight" coordinate-wise| distances es(vi,

in 3 j and a total distance between Y and XB8. Suppose that -

the weight function is w(z)(Q) Then

(13) Q(z) = w'?)(a) 8y ©)y,x/a) = 9(2)(2,): B8).

Some of the possible forms of @2 are as follows

Haes ¢! :E: ¥, :E: Xy 48 j|:E: 9

t=1 j=1 1=1

1t

where ®,,  1is the (1,t)-element of matrix @ and is the

(1,t)-element of matrix Q' or Q' if n, < n,




: (2) (2)
. (2)0 0 R (2) %3 ')
(13f)‘ Q -—"'—""'(2": = "'_—'—'—"(ﬂ v - *
T, i L 2 B Bl
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n n ‘
(13b) (2) [Z 1Y, thjj et P E A

t=1 t=1 1=

k
-Zthﬂjlm lejj ] =

b ) =

-4 @2y - 38y ;

SIS [i."‘ Z Xyt Zn: i 12 =

t=) I=1 t=1 1=1

: ] o
Z xegpy 17 0%hiyy - D x40, ']m'

=1 =1
(13d) iy 2 @‘2) = 52 4 3{2),
(2) _ £(2) Q(z) :
(13¢) @ max 1¥, X | 0T, - —-————(1-.
> 6tn ; 13% E, 6 myi+d;?

(2)

E‘. i = 2 S, are corresponding to the Qi' i=2 5, reslduala f'
vectors



60 - wladynaw Milo

[ n n° k
TP et o i B S e
t=1 1=1 3=1
t =1, ¢vsy n°, 1<n°<n,
(13g) @‘2)
k
i=1
- s t-1, seey DO, 1‘n°< I'I,
£ n °
}: IRITY B AR X, 480
t=y " 3 :
t=1, v.e n°, ¢ n°‘ n,
(13n) @{2) - :
0 otherwise, i\.t - J\.t(Q) is the t-eigen ira- 3
L ' g ; lue of Q,
e‘:)(v,xs) if Q(J)(v,xa) ¢ile
(31) 9‘2’ , s e
gk B E ORRE
(2)(.0) Z l-‘ ;

P he ontimtorj dorived !tm thc \nightﬂd eﬂ:uution 9““1“3’“
: {”ng};ionall (Q 1.‘ are more insensitive 550 autocorulat.ton "
oftoctl t:han tho e-umtou doriv-d from thn ,_; funct_ion.all &
PR S i e
xp'hoeh tn\uu- ot :pncttomu t.herq 10 'ltlbiniﬂ",“j
% vbtch', 111 umth r.ho nnge ot Q bncauu ot 111-poudmu of ﬂnf"»’jf
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estimation problem caused by a strong pair-correlation - between
columns of X Ybad-conditioning of data). Such a stabilizer
(regulizer), regularizing functionals may have difterent forms.
In general it should be some  weight function of distance between
8 and a priori value of 8 (that is b(i)) or some weighted
function of distance between a priori value of Y (i.e. Y‘p)),

‘and XB8. In both cases, weights themselves should be some

functions of stabilizing (roqularizinq) parameter (s) o (r =
= diag (11' vei M) ¥ ¥y € R, General forms of regulaiizers

may be as follows

(14) | w(g) pgts, b4y, :

(15) w(g) gy (¥(P), xp), :
(16) w(r)pg(s, b)),

(17) w(r) g (v(®), xs),

(R0, o ~wig) pa(s, 0),
‘ (19) i, ) ae(By 0.

Under (14) and w (g) =4 we may distinguish

 (142) o{°) 12 18y = b 2 pita - My g
: : S
L | il :

(14b) o3, 'T[Z“‘ -b“"] = gus=ny

¥ (it S g 43

‘ _ : (o) . (1) 3/2 2/3 :

ALY fonct i Q,ﬁ}»,i [Z I'B-.- bj ] R
Z (146). L % Q(O) - Q(O) (0)

II 1'
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(14e) 0$%) =40} + 02, + 02} .
(0) (1), (o) 4%
(”f} ®yr,1 = (Bprp 18y = b7 yrp,y W ‘
$(0)

(0) 05324 (0) e
4g) Dfmic o1 7T R g g e
s o, Birg'* @171,4 Qx-”' STLRE 2
(0) 5% (0) g2t
4’01" oy ¥Pxrra ” YO R
i R L Byt + $or,4

Ij. 3 =1, ..., VI are corresponding to the q>j‘;1, Ay BRI
residuals vectors. 2

[ x° : G
Zjlf aj+bj“) R e SR P g
i=1
(14n) Q,‘(‘I’}I i
L e e N A R T

Under (15) and w(g)= 3 we have

(15a) c}‘°) « g‘z ¥{P) = Z Xy -f(w“’) - x813'1,
g : t=1 j=1

(15p) : Qg‘l’)‘ Z (P - Z X ] -g_vu }t(p) - x8l,

t=1 3=1

Vi 5 2/3
{1%¢) . ﬁ:’% - z’Z 1¥{P) - Z % 48 ,3/2] >
(A A ‘te1 :
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(154)

(150)

(15£)

Under (16) and I = diag (4, ...

I
(o) (p) : (o) @éo)
$3°) = max | ¥'P) - X, 48,0, 02 = '
v (3 vro s b ;QZ; t.j j VI E]1 2 Q"I(‘)‘o
(0) (o
p (@) e plo) o 011}
VIl . 0)' “vIIt ’ (o)’ -
Brrt * Or; Erppd * Oppp
(o) (o)
MO R N . i,

JHEE RS

v o)’
Byl + 0y

¢ o)’ X
Epyl + Opy

o fk) we have

<3<k 2 XIV XIV, 4

@(0)

(o) XV, i
b L o )

v (o]
wl * ®xv)s

k
(16a) 0:(:1’3.1 - z Ty184 - bgi)l =(ris - 5%y,
=1
(0) 5 (1),2 (172 1/2 (i
(16b) <l>x3'1 - Z Tyi8y - by SR AL TR, 1)
: 1-1
(o) S (1),372{%/3
(16¢) Ppvr,1 = Z 418y - by '
Lg=1 .
. (o) ) ( (o) (o) (o)
(16a) °x8n,1 "b)(tgv,i % ¢x321' °x3111,1 . °x§v,1 + vt
(o)
*‘bxsz,z'
(o) ) s ba) 5
o o ’
(16e) Qyry,q = max 4185 - by, Byy”y = R

+



64 Wiadystaw Milo

$(0) glo) -
(1eg) @0 XVI, i o) . XVII,1
. XXIX E’ 1+ Q‘o) y XXIIXI 1+ °(° ’
Exv XVI, 1 Exvrz? * ®xvir,1

Bgo), j = XIV, ..., XVII; are corresponding residuals vectors.

Under the general regularizer (17) and w (') =0 we have

n k
(17a) 85 = 3 1P - 3 840,
t=1 j=1
n k
1/2
6w oty +[ 5 0 - 3w
t= =

3
T e

£=1
e RCRTT
(o) (') k ‘ (o -Q(O) .
(17e) $.0' = 1x{P) o X 8:4s B0) o
Ay | B Sy :L:‘: T5"es i v Eg 1+ LoV
v (o) ¢ : =(0)
a7e) o) - Sy 8o . = QxnxTr
o)’ II o
: Eyre? * @pr s xxu' + Byrir
- (0) Lo v e
slo) o v ol gy ¥
TP IO e o)
XIX zn 1+ on X 8' 1 + Q ]

j . 3= XI, cevg xv. are cortuponding :esidulu vecton.

Under the general regularizer (18) and w (1) =% ve have thc."‘
tonoving explicit fom ; : L ; M N
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. (o) B 2 1/2
(18b) ¢xx11 - z: (4EN ’
..j-]
R
! )y 3223
(18¢c) MShse = | 2 A ’] ;
‘ _j-]
(0) . alo} i 'zte) ( ¢ ¥
(184) Sxx1v = ngx + Pyxrre °§:& » <I>x;;v » @xggzx'
(0) (o) L
(18e) ¢ = = max 1B} $ 2 = e sles!
XXVI 1<3<k ¥ 5 XXVII Eixx' 5 §x§1
(o) (
i $(0) it 4’xxu(_r $1ad: ¢x§}1% oo
18£ XXVIII : ey * XXIX > )
Exxrr? * Pxxrr Byxrrr? * Pxxirr
(o)
¢l . ¢XXIV(*y—
XXX ’ 7 R
Eyxru? * Exx1y
Ej, § = XXI, ..., XX1IV, are coriésponding to ¢§o) residuals

vectors.

For (19) and w(r)=r we have

k k k3

; 1/2
G 8= ) iyt Hh - [Z ,,mj.z] :

- j-1

k -
(0) 3/21%/2 (o) (@) , (o)

; ; $ (o)
(o) (o) o o6
(19e) .- By = R e WL At i xxxvr PTEYR y By

XXXI XXXI
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(0) (0)
(19a) $e) . ¢'xxxu é(o) 3 ¢xxx111
‘ XXXVII El 1 + é(o) ’ XXXVIII B' .‘ + é(oj i
XXXIT XXXIX XXXIIX XXXITI
(o) plo)
Q(o) e XXXIV ¢(o) = XXXV
XXXIX E’ ' + ¢(0) ¢ XL B’ 1 + @(Oj ¢
XXX1V XXXIV XXXV XXXV
Ej' J = XXXI, ..., XXXV are corresponding residuals vectors.

Notioei "t

' =3 ’
ad) o [x(i) xx] x 1) (1)

n is the size of sample

Possible options for B

(1)

are:

' N(i) » (110 “rey inlll

b WP N(l) is the set of sample "i"

(i) (1) {1214 (1)
indices: Y = (v11,¥12, vess ¥y ) X = (x, ﬁxz: cee Xy 24
Ay
(1) (1) . (1) ., (1)
xd = (811'3‘ 5y x‘n d) R I I Gl k;. b is . therefore
i (1)

the vector of véiues of estimator B

ple (x), y(1)y 4. L, Sk 8

"

» where 11

obtained by using sam=~

is the number of

data samples which are at our disposal a priori.

Notice 2.

a) ¥(P), = ylt) () (X by
! n

i

Possible choices for ¥‘P) are:

Yl may, eny 1, are
i

other a priori n-size samples of Y obtained out of model~like

modes,

b) Y(p)l - y(p)' P + 4, P = p‘, seep pp are other a priori

n-size

number of explanatory variables);
terpreted as the

p~th kind predictor of Y,
tion, is a function of the assumed form of estimator a(P)

sample valves of Y obtained by using model-like modes
(not. necessary linear models and not necessary with the

the parameters of p~th kind model that approximates Y.

The two kinds of functionals (distinguished by Arabic
Roman numerals as subscripts) introduced above may be matched.
At the outset of this matching we obtain:

with each other.

same

in this case Y(p) can be in-
which by defini-

for

and
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(20a) ®‘°'°)._= ®§°) +cblfn°), 818 st 7 RS SRR

(20b) Q{?&?i:=¢§_°)+®é?2, Ly e oy q=1, .i., XXIII,

1’11, ey 1n (]

i

(20¢) @ffl;f)z -@{2) +~’bi°), vEY, e 13, mEI, Ll XL

(204) (bs,zqozs - <I>(2) +«I>(°) {vat, s K Tt

R T SRR B e
1 ny

The result of matching is, therefore, a great abundance of
estimator quality functionals. To each functional corresponds an
estimation problem (cf. for instance, (5) 4n § 3 and next sec-
tions) and, as a solution of this problem some estimator. It is
easy to see how many different estimators will be obtained ' on
the grounds of the proposed functionals. In the next  section

we show a few examples how to do it.

5. SOME REGULARIZING ESTIMATORS DERIVED FROM QUADRATIC FUNCTIONALS

-

For the functional ¢;°%I the estimation problem is

, (o)
(21) nin ¢2 11 (8)-
Using differential calculdl we have its intermediate solu-
tion in the form

(o) (o) (o)
¢, _I_(c).ztbz +3¢n .
28 8 28

= 32(-x'y + x'38) + 29[x'¥®) + x'x8] = o,

aid’the.flnai solution is
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(o) Nt NPl 2 _ZL_(x.x)-lx.,(p), e

Y- B2,II,p 1+4 "0 1+y P

Under the functional 6g°;x11 the estimation problem is
’ \

(o)
(22) m:n ¢2,XXII‘B)'

Its solution may be obtained by solving the following system
(with respect to B8) s

285°)
—La-?gxu =2 (-x'y + x'x8) + 248 =o0.

The solution 18 just Hoerl-Kennard’s ridge estimator B8: =

Cinto)
BZ +XXII

Under Qg?;xx!x we shall find the solution of the problem

= (x'x +41) " 'x'y.

(23) min 3300 yrr(8)-
8
Because
235°) '
._l.‘._x'—x—x.ll = l (_xly + xlx‘) + 2 rs’
8 2 2
therefore QQ(°) /38 = 0 Aiff
2,XXXII ;
AR R B el
8: By, XXXII (X'x +IN " 'x'y.
In the case of functional d".(’?;I, 4 the estimation problem is
: .&(0)
(24) mtn ¢2,11,1‘°)'

_ Since

2,381

284°) ./ = %(-x'! + X'X8) + —:-1'3 7 '%-75(1)1

therefore 23.°) /28 = 0 iff


http://esti.mati.on
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- nt@) R =1 (s (1) 2 :
B: = By 11,4 (X% + g3) (%10 b T S ...,1n1.
In the case-of {0) we search for ;
2,XV,i
(o)
(25) : m:n Qz,xv,i (B).
Because an?;v,ilaﬂ = %(~X’Y + X'XB) + %(rﬂ - Fb(i)). therefore

4 (o)
3,%y, /28 = 0 iff

8 = pio) - (X'% + )N X'Y +.b

(1)
By xv,i )

All these gquadratic metric estimators are, more or less,
robust against strong correlation between explanatory variables
in the model J%Mb and anomal results of observations for Y.

Under the assumptions of model &M~ and definition of ¢,3,
MSE we have

$(a°); ) raght r-f;,}x'x)"x't(v“”) #8, P =PysceciPp

t(“;?))cxn) = (x'% +21)7" x'x8 ¢ 8,

e("gc:;(xxn) - (x'x + 0 'x'x8 # 8,

z(ng"’%l,*) = (x'x+71)"(x'xa+1b“)) + 8, =4, ceny 1“1'
t(";?))cv,i) - (x'x e F) "V (xxe +rpt)) 48, 1= 1;. deny 1n1.'

The relations confirm biasedness of all chosen quadratié me-
tric regularizing estimators.

If cov (Bé°), v{P)) = 0, then

(o) - (o) 3 (o) (o) 72 (0) Yy
3(8251109) z(BZIIIlP t(sznrxop))(nzllxlp 2(52'11'9))
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2 - ¥ 2 L. %
Y Alxex)! +(, . 3,) (x50 xa (e Phxx x)”!,

aalo) o ._“1_‘,
By 11.p! (1 ™

28500 ) = X + 1) xx(xx 4 41077,
’
S(Béo))cxxn) = a2(x'x + )Y xrx(xix + eyt

!

(o) (o)
a8, 1r,4) = (B, yxry)e

(o) (o)
(8, 4y, 1) = BBy yxxrr?

By definition nsx(a§°)) - 2((aj‘- B)’ (8;°) -~ 8)). For biased
- estimators (see Theobald [7]) we have
i/

MSE(B;O)) = tr I(Bgo)) + tr (bias B§°)))(bias (Bgo)))’.

Using this relation it is easy to derive mean square errors for
our chosen estimators. For example, '

uss(ag‘;"xxu) =ty »(Bg"’,)‘xn) +tr ((X'% + 1) 'x'% -

- 188 ((x*'x + 1) 'x’x ~ 1)’

Because tr A = tr P'AP, P'P = PP' = I, therefore,

MSE(BZ(’?))(XII = d?tr (A4 1) 1AM + 1)1 4 '

+er (A +9D)7 A - Daa’ (A+ 41" A - 1),

where A = ¢1ag(21, ""‘;k)'" is thé diagonal matrix of ‘eiqcn

-values for X'X.

: X s kg

R e T e Sl il
f’".'usz(?z,xxlz LA :é:;,.m—-——;x}ﬁ,' +'; 1;21'(%4 s ' i‘ : P a._

#@qular;zinq‘edt;mator “Bgfﬁ)aﬂ'_lj dbpinqte- gl(‘O)_ - hgo.) in ' the

& 3 i
Y
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sense of MSE iff "SE(B§°;XII) < HSE(Bgo)). The latter relation
. '
holds 1iff ;
, =D H
(26) i < a2,

-

Applying similar reasoning for the estimator B§°;xxtl we have
p ]

(o) 2
MSE(B) yyxrr) = ¢ Z z
oo g=1 Ay *'Iif 1=1 (1+-~)
i

Hence ¢
usn(a§°,)‘xxn) < usa(né“) 1ff
| z 7,220,
(27) *"‘ : c < d2,
2
* 2: 9% 7R z: ¥
4=l i=1
For (55?;1.1’ we have under 9(1) = prpit)
(o) 4y ﬁé 24 :
Mse(B%!_ ) =a
2. X34 b
3= Oy “T) g O+ 7 “3’
i (1) k Q(1))
- zt
j-] 4 ""l’) j.] (Z'j + 7)
and hence
: uss(ng“’;x'i) < uss(né“) 1ff
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L 2 (1) (1) 42
2 S .
¥ Z }\jaj—Zx Z by 1 5t 32 Z hj(b )
(28) 3=t : bt i< o2,

29 Z Ay + ke
3%

From relations (26), (27), ((?8) which determine the domina-
(o) o (o)
tion of estimators Bj yyrrs By yyyyre 82,11'1 (domination in

the MSE sense) over the Gauss-Legendre estimator Bg°) 5 R T
easy to find conditions on the regularization parameters 7(31)
which assure the truth of these relations. The calculation of
values for 7‘(71) may be done hy solving the equation u ) S

i B§°:‘ II'= 82, where 5% 1s such that HY - X8Il ¢ 6%, m =
'

= XXII,XXXII or solving the equation Il Y - XB2 1.4 u-ég (solv=
’
ing all the two equations with respect to ¥, 31

6. FINAL REMARKS

We have proposed an unified approach to the analysis of re-
gularizing estimators. Our analysis is by no means complete. The
careful reader of this paper may easily see that the presented
classification of reqularizing estimators would be extended by
introducing:

! - different assumptions concerning the form of estimators for
4 and xl,

- assumptions that we do not know a priori the vector b
but we shall estimate it by . using some estimators B(i),

~ some additional weighting of regularizing distance between
8 and B(l). These weights should tell us about dispersion in
81, ana/or dispersion in Y.

In writing this text we were mainly inspired by the works
of Tikhonov, Arshenin [8], Lanczos [3],
Hoerl, Kennard [1,2], Morozov [5]

The text is the extension of M i 1 o' s [4] work done wi-
thin the contract R.III.9,5.7. More detailed presentation o?ﬁ

(1)
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the above results can be found first in our 1981, 1982  works
under R.IXI.9..

In this paper we have derived, as an illustration, only five
different estimators corresponding to five different estimation
quality functionals. The detailed analysis of their properties

“as well as the derivation of other estimators will be presented
in the subsequent paper.
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Wiadystaw Milo

0 OBCIAZONYCH ESTYMATORACH REGULARYZUJACYCH. CZESC I

c‘loi artykulu jest priedltauienio:
a) numerycznej analizy konsekwencji ziego uwarunkowania macierzy X'X,.
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b) propozycji definicji £le postawionych zadaf estymacji parametréw o~
g6lnych modeli liniowych,

c) zunifikowanej statystycznej analizy estymatordw regularyzujgcych.

Dla ilustracji wprowadzono konkretne postacie estymatordw z kwadratowe-
go funkcjonatu jakodci estymacii oraz podano warunki dominacji tych estymato-
réw nad estymatorem Gaussa-Legendre’a w sensie bigdu dredniokwadratowego.



