ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 3, 1989

Tomasz Filipczak

A NOTE ON THE RECURRENCE THEOREM

This note contains a simple proof of a generalization of the recurrence theorem from T a a m s paper ([3] Theorem 2).

Let X be a nonempty set, S - a s-algebra of subsets of X, and I - a s-ideal included in S. In this note, T is always a measurable transformation of X into itself (i.e. $T^{-1}E \in S$ if $E \in S$). T is called dissipative if there is a set $E \in S$ -I such that E, $T^{-1}E$, $T^{-2}E$, ... are pairwise disjoint; in the contrary case, T is called conservative. T is called compressible if there exists a set $E \in S$ such that $Ec T^{-1}E$ and $T^{-1}E-E \in S$ -I; in the contrary case, T is called incompressible. T is called recurrent if, for each set $E \in S$, I-almonst every point of E returns to E under the action of T (i.e. $\{x \in E; \forall (n \in N) T^{n}x \notin E\} \in I$); strongly recurrent if, for each set $E \in S$, I-almost every point of E returns to E infinitely many times under the action of T (i.e. $\{x \in E; \exists (k \in N) \forall (n \ge k) T^{n}x \notin E\} \in I$).

In this note, we shall prove the following theorem: Theorem. Whenever T has one of the following properties:

- (1) conservativity,
- (2) incompressibility,
- (3) recurrence,
 - (4) strong recurrence,

T, T^2 , T^3 , ... have all these properties.

In the case when I is the σ -ideal of null sets of a measure space (X, S, m), this theorem was proved in [3]. The proof presented there can be applied also in the general case. However, we shall give a simpler proof.

Tomasz Filipczak

Proof. The equivalence of conditions (1) - (4) for the transformation T was proved in [4]. Another proof can be obtained from [2] theorem 17.2 ((1) \Rightarrow (4)) and [1] p. 11 ((3) \Rightarrow (2) and (2) \Rightarrow (1)).

To end the proof of theorem, we shall show that if T is strongly recurrent, then T^n is conservative for each $n \in N$.

Suppose T^n is dissipative for some positive intiger n. There is an $F \in S$ -I such that the collection $\mathcal{A}_o = \{F, T^{-n}F, T^{-2n}F, \ldots\}$ consists of pairwise disjoint sets. Hence, for each $k \in \{0, 1, \ldots, n-1\}$, the collection $\mathcal{A}_k = \{T^{-k}F, T^{-k-n}F, T^{-k-2n}F, \ldots\}$ consists of pairwise disjoint sets. Thus the intersection of more than n sets of the form $T^{-j}F$ is empty $(j \in \{0, 1, 2, \ldots\})$. Therefore, no point $x \in F$ belongs to infinitely many sets of the form $T^{-j}F$ and, consequently, no $x \in F$ returns infinitely many times. Hence T is not strongly recurrent.

REFERENCES

- [1] P. R. Halmos, Lectures on Ergodic Theory, Tokyo 1956.
- [2] J. C. Oxtoby, Measure and Category, New York 1971.
- [3] C. T. Taam, Recurrent Properties of Conservative Measurable Transformations, Duke Math. J., 28 (1961), p. 277-279.
- [4] F. B. Wright, The Recurrence Theorem, Amer. Math. Monthly, 68 (1961), p. 247-248.

Institut of Mathematics University of Łódź

Tomasz Filipczak

UWAGA O TWIERDZENIU REKURENCYJNYM

Praca zawiera prosty dowód uogólnienia twierdzenia rekurencyjnego z pracy T a a m a ([3] twierdzenie 2).

40 .