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ON AN OPTIMIZATION PROBLEM OESCRIBED BY
SOME INTEGRAL EQUATIONS

The paper gives_the necessary condition of optimality in the case
where the optimization problem is described by some integral equations.

Introduction

There are many optimal control problems with a performance in-
dex being a functional given by a differential equation (called the
state equation). The results obtained in [4] enable one to consi-
der the case where the equality constraints are represented by some
integral equation. If the functions appearing in the functional and
in the above-mentioned integral equation are of class J2» the

ne-
cessary condition of optimality can be found.

Formulation of the problem

In the space ¥ = I2f x L2n let us consider the

following opti
mization problem

1

(1) I(x, u) =.f g(x(t), u(t), t)dt - min
0

under the conditions



(3) u(t) e v for te [0, I] a.e.
where g is the scalar function
g ; Rn+n+1 - R

of the form

(@) g(x(t), u(t), t) - vI(t)Ho (t)v(t> ¢ po(t)v(t)

and f 13 the vector function f : Rn+n+"+” - r of the form
5) f(x(), u(®, tr) ~*
» (fCxif)", u(y), t.7) , fn(x(M), u(t), t,7))

fACx(E)T u(t), t.z) * xT)HI(Mx(r) +

# PALN it) * uMIGjitduC.t)

where: te[p, 1],Te [o, 1], v(t)  (xCt), u(t))T, Ho » HQ(L) is an
(h+n) x (n+n) matrix, pQ =pQ(t) is a1 x (n +n) matrix,
Hi = Gi 2 Gi(t>, i=1, ..., n, are (n x n) matrices, pA =
*pAT), 1 * 1» n, are (1 x n) matrices. VCRn is a closed
convex sat in Rn, the vectors xCO, u(®*) e 12°" We assume that the
elements of the matrices H , H., G, are measurable and bounded,
and that the coordinates oi the vectors pQ, pA belong to L2"e The
functions f, g have continuous derivatives fu, fx, gu, gx with re-
spect to u and x.

According to the results obtained in [4]J, we shall prove the
following ,

Theorem. If vQ(t) = (xQ(t), uQ(t)) is the solution of the a-
bove-mentioned problem and the following additional assumptions
hold: ‘

a) the function | has the property

®) f FIfX(y(L,r), t,t)l2dt dr < 1
00

b) the matrix



©) A(t) «‘%fu(v(t,r)f t,r) d*

0
«

is nonalngulac, then there exist a real number » 0 and a vector
function ANC*) e L2F. such that

© IAO! +IAjI> Q
and
(9) Vx (vo(t)>c =

1 T
ST(FXT(VGP B TEIAJCT)) dT*Xj(t) = 0

(10)
<V u(vo(t>* t} " ~A<t>Tuo”N) 1

*min (X0 (vn(t), ) - A,(t))Tu(t)
ueV 1
where
y(t,r) =.(aW , %(t))
V(T» £) * (xo(t), uq(t))
fO\J(L, T, t,t) = f(xo(T), uQ(), t, 1)
g(vo(®), © = g(xo(D), uo(o), O
fly(™, t),rt) = f(xo(t), uqg(t), T,©)

Proof, First, we shall specify the characteristic cones
[1] which enable us to obtain some Euler equation and to find the
necessary condition of optimality. We consider the Cartesian pro-
duct of t2-spaces

X =L2n x L2n
and denote by 7~, Z2 the following sets:



we notice that our problem becomes
(1A) I(x, ) - min; (X, U e Zjn 22

e observe that Zj and Z2 are sets with empty interiors.
The cone of directions of decrease of the functional I(x,u) at
the point (x0(*>, %(*)> = v0™ is (according toflj) of the form

(15) Co *{(x, jilex : T CH)* *

¢ gi(vo(t), BHU(t))dt < o}
and the conjugate cone C* is

(16) C* » {foe X*: fo(x, u) =
* - X0 | (9x(vo(t)* +
. ¢ »J(Vo(t), OM(P).).dt, X0 a °}

Next, we denote by C* the set of functionals supporting Zj at

the point y(*,*). As we know (theorem 10.5 in CI])i Cj is the cone
conjugate to the cone of tangent directions of the set Z* at the

point vQ (e, *). Hence
an C* * {f] e X*: fx(x, 0) = (5>}

where fj - functional supporting the set U m{uelLjo : u(t)ev} at
the point uQ(*).

Applying the Lusternik theorem [1], we shall find the cone of
directions tangent to Z2 at the point "i(*,0. Let us consider the
operator

P :L2n x L2n - L2n
of the form

1
(18) P(x, u) = x(t) -If(x.(T), u(®,~ t,T) &k
0
We have

(1?) P(X  x, U+3) - p(x, u) =



1
*x(t) -] (Fx(x(T), u(t), t, T )x(t) *

* fu(x(t), U(t), t,THu(t))dT +
¢ 0-y/dixI™ o JH*)
Note that the operator S : 12n x L2° ~ L2n of the form

(20) S(x, u) - x(t) - i(fx(x(T), u(t), t,0x(T) e

¢ fu(x(r), u(®), t,«nu(t))dT

is a linear operator with respect to (x, u). Hence we find that
P(x, u) is differentiable and

(D) P(x, wWk, u *

1
-x(t) - J(FPX(x(r), u(t), t,THX(r) +

s fu(x(f), u(t), t,Tu(t))dr

We shall show that P “(x, u) maps L2n x L2° onto the whole spaco
L2n. This means that the equation

(22) x(t) - %(tx(x(T), u(), t.Dx('r) ¢

+ fu(x(r), u(t), t,THu(t))dr * a(t)

has the solution (x, u) for any function a(t) 6 L2n. If we put
u(t) * o, formula (22) takes the form

(23) X(0) - FEx (), u(), t,r)x(T)dT = a(t)

It is known [3] that Fredholm"o linear integral equation (23)



has a unique solution x(t) for any function a(t) e Lj" in the case
where assumption (6) is satisfied.

According to [1], the cone of directions tangent to z2 at the
point y(«, <) is of the form

(24) C2 = {(x; ) E€X x(t) =
1

= J(Fx(y(t,T), £, Tx(r) +
+ fu(y(t,T), t.T)u(t)) dr}=
= fox, wex 1 x(® =Ax(CLT), tAx(rdr +

i
+ Cj* fUu<\|(t,T), t,T)dT)u(t)} -
0

and, with A(t) from (7), we obtain
r 1
(25) C2 = {(x, iPeK : x(t) = |fx(t,<r), t,Hx(T>dT +
+ A(Du(t)}
The conjugate cone becomes

(26) Cx *{(f2\ fu)e X : f2x(x) - Fou(u) » O,

V(x, u) e C2}
where the functionals f2x and f2u belong to L2°.
We denote the values of those functionals on the elements x and

u, respectively, by

2n fox(x) = |1(v2x(t))T x(t)dt
(28) f2u(u) rJ(?2u(t))T 1i(Hdt

where V2X e I2n, i2u e L2n.



Putting f2x(x) from (27) and f2U(u) from (28) into (26) we
tain
1
(29) cx = {f2ex*. f2(x, u) - jv2x(t))Tx(t)dt *
0

] @2 )Tu(t)dt * o,  V(x, S) 6 C2}
0
We rewrite it in the form
(30) C* r{fa2€ K fo(x, u) *

=] v?y () Tx(t)dt

1
» JV2X(©))TA*1 (D)A(Du(E)dt « 0, V(x, u) e C2}

with A(t) from (7).
By V2U e L7n we denote the vector satislying the formula

(3D) Vzu(t))T  (MTu(E))TA"1(D)
Then we find fiom (30)

(32) 22 - {f26 > f2(x, u) =]((V2(L))Tx(t) *
¢ (V2u(D)TA(DU(L))dt, v(x, u) e C2]

According to (25), we have

.V.,- -
1
A(u(t) = x(t) - J,Bx(pt, TV-.x(T)d"t
0
Hence
[ | 1
(33) f2(x, i3 * J((Ff2X <t)) . "> <V ()T (x(v) -
0

1
-j XA, D,t,Dxv."DHdNdt = Q
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We rewrite the right side of (33) as

[(0452x(t)) Tx(t) ¢ (UR(E))Tx(L))dt -
/

- §jC j=n2u), &, 1D,t,0x() > drydt *
0o o

0

1 1
-j( jU<fxT(p(t,r), t,r)»A)(t), x(t) > d*rydt =

0 O
= J((2 X)) Tx(Y) +G2u())Tx(L))dt -
11
(p(T, ©,T, HI=2U(T). 5(t) > dt)dT
0 o

=] (M»2X(t)) Tx(t) * OP2u(t)T x(t))dt -
0 L)

}(Jl (fx-lT—(II(T, O.T, t)V2U(T))]E x(t)dt)dT
00

Denoting by B(t) the integral

(3% | (FXT (V(T, t\zFt) V2u(T))TdT = BT(t)

we obtain

(35) J1 ((m2x ()T < O ()T - BT(D)j?2())dt = 0,
° \B? G LOn

Hence

) V2O +ivHEDF - BT(t) m0 for tE[0, 1] ae.

or, with BT(t) from (34),



|
@7 (M(t))1 * @eu(t)) f-I((XTME ©),T,0)U>2u(T))TT * 0
0

Next, we observe that:

the cone Co is open and convex,

the cones Cj and C2 are convex,

the cones C* and C2 are of the same sense (according to theo-
rem 3.4 in [4]).

We shall prove (in the lemma presented afterwards) that the in-
tersection of the cones Cj and C2 is a subset of a cone tangent to
Zj n Z2- Then we conclude that the assumptions of theorem 4.1 in
[4] are satisfied.

This enables us to apply the Euler equation of the form

(38) %0 J (ng(vO(t), Wete) +

* QuT(vo(t), t) u(t))dt + fj () +

Fer2" () x(t)dt + I 2u()u(t)dt m o0
0

where * - as in formula (17).
Equation (38) is satisfied for an (X, u)ex( hence-*

(39) “X09XT(vO(t)> ° * (A2X(E))T 1 0

(40) f1'(u) -J uoOu(wo(t). - m2u(t) ) Tu(t)dt

Since  is a functional supporting the set U ={u€ L2n;u(t) 6 v}
at the point u0(*), we conclude from (40) that
(41) (\,9u(uo(t)> - V2u(t))T uQ(t) =

= min (M, (V-Ct), ) - Wu(t))Tu(t)
ueV

WtN{"I2*C.t)}~ from <17), equation (39) becomes



With B2U(*) =Aj(0, we obtain from (41) and (42)
(43) (\,9u(uo(t)’ “V o)) r

=min (Vg (u (1), © - X.(t))Tu(t)
L/ 1

(A X0Qx(VQ(D), ©) + Aj(t) -
1 7
-1 fx (p(T, tAT, t)X1(T)dT * 0
0
In the case where XQ = 0 and Xj(*) a 0, we conclude that

fQx, D) = fj(D) = f2(x, i) = 0. In that case, the condition of
the existence of functionals fQ) , f2 not all equal to zero is
not satisfied. Hence

IV el*ii > °

That completes the proof.

Lemma. The intersection of the cones and C2 is a subset of a
cone tangent to Z* n Z-

Proof. It has been shown that the operator P from formula
(18) is differentiable and the operator P*(x, u) from (21) naps L2n x
x 12n onto the whole space L2°. Hence we conclude that P sati-
sfies the assumptions of the implicit function theorem in some
neighbourhood VQ of (xQ, up), which implies that the set Z2 can
be represented in this neighbourhood in the for*

(45) Z2 = {(x, u) e X :x *<p(u}
where @ L2° - L2n is the Cl-class operator satisfying the condi-
tion

P(fo(w), w) =0

for all u such that (<p(u), u) e V~- We deduce that the cone C2 can
be represented in the form

(46) C2 - {(x, weX : x =«,,(ud)n}



Let (x, u) be an arbitrary element of the set C1n C2.

there exists an operator R -V such that

E E-00
and the formula
47> <V uo} + €(x* ¢ (uR(e)* e Z1
holds for sufficiently small E and any tx2(E), such that

=2 (E)
* -0
E £ - 0+

Then

Hence, according to (45), we observe that, for sufficiently

small £, the following formula holds:
(48) ((p(uQ + Eu ¢ vu2(£)), uq ¢ Eu ¢ pu2(E))g Z2

9p(u) is a differentiable operator, hence

(49) iI(KO ¢ EG ¢ Vu2(E))- * (UQ) +&Pu(u0)u ¢ UACE)
x1(E)
for some Vv such that 11» - ——= «0.
E-0* E

From (48) and (49) we obtain

(50) +Eu(u0)u + txI(E),
+Eu+ > E)De 22

and, since
(51) (<P<UO> +E<qy (UO)u +yx1(E), UuQ Vv
+ Eu + WU2(E))= UQrud) + £(*,, u) »
* (vxIE>, Vuz(b)
we find

(2) iXxo* uo5 + t(x* + (t>XI(E)* Uu2(e)™ £ Z2



If we take ux*(E) = vy*(E), we conclude from (47) and (52) that

the vector (x, u) 6 Cj,n C2 IS tangent to the set Zj A

arbitrariness of (x, u) completes the proof.

Example

Consider the minimization of the functional

1/ =< & u, ()
Ix, v = fI3, 2] + 1. 2]
A . oxe@y u2(b).
with the equality constraint
Xj(t) 172 07 X1(T)” "2 O ux(b) \
x2 () 0 1/3 x2<t) o 1 U2 (t))

and the inequality constraints imposed on u(t):
luk(t)lsak, k=1,2
From (9) we obtain
"+ 172, J(i)dT
-2V 173xj »(MdT

the solution of the above integral equation is

x1,1(t) o<V

V.20 -3y
According to (10), we find

_ 7 " Y Uj(t)-
leV [\,.2xo. J u2 (t)

= mip ,A,(ﬁp,(t) + 5up (1))

The



Hence

u, 1 ="ey uo,2 =

and, from

1
M = -2, ¢« f 1I/2x ,(T)dr
1 x J

X0, 0,1

we find

xo,1 = “4fAl" xo0,2 -3/2a2
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0 ZAGADNIENIU OPTYMALIZACYJINYM
OPISANYM PRZEZ PEANE ROWNANIA CAtKOWE

W pracy uzyskano warunek konieczny optymalnosci dla ukdadu opisanego za pomo-
cg pewnych rownan catkowych.



