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THE EXTREMUM PRINCIPLE FOR PROBLEMS OF OPTIMAL CONTROL 
WITH MIXED CONSTRAINTS

In the paper the extr-iium principle for problems of optimal control 
with equality constraints on the phase coordinates and the control is 
proved by using the generalization of the Dubovitskii-Milyutin method 
from [14].

Introduction

The problem of optimal control with equality and inequality 
constraints on the phase coordinates and the control was investi­
gated in [3], [7], [l], [4], [5], [12]. In these papers the extre­
mum principle for this problem was obtained by making» use of the 
variational method under the assumption of "regular controllability" 
but what is important is that there was no nonoperator constraint 
in the form u(-) e U where U - some set. The impossibility of addi­
tion of these constraints follows from the properties of the va­
riational method applied in the above papers.

Another method, which is applied to obtain the necessary con­
ditions in optima} control is the Dubovitskii-Milyutin Miethod pre­
sented in [9]. But using this method, we can obtain the necessa­
ry conditions for the optimal control problems with only one equ­
ality constraint. In [14] there was obtained some- generalization 
of the Dubovitskii-Milyutin method for the case of n equality con­
straints. The result was obtained under the assumption of the same 
sense of cones which implies the weak* closure of the algebraic sum.



By using the results from [14], in [15] Walczak obtained the 
extremum principle lor problems of optimal control with equality 
constraints on the phase coordinates and in [16] for problems of 
optimal control with the nonoperator equality constraint.

In the present paper the extremum principle for problems of 
optimal control with equality constraints on the phase coordina­
tes and the control is proved by using the generalization of the 
Oubovitskii-Milyutin method from [143 - The problem considered here 
differs from that of [15] in that the equality constraint depends 
on the control (not only on the phase coordinates) and in the me­
thod of calculations of cones. The extremum principle for this 
problem is proved under the assumption of "strong regular control­
lability" which (in 8 weaker form) was presented in [l], [3] and
[7], but the problems from these papers do not contain the non- 
operator constraint u(*) € U and the method of proof of the ex­
tremum principle is different.

*' Basic: definitions

D e f i n i t i o n  1. Let l.p (ff, 1) be the space of func­
tions Lebesgue - integrable on the interval [0, l] with values from 
Rp , with the norm

1
fix | = J|x(t)|dt 

0
D e f i n i t i o n  2. Denote by L¿(0, 1) the space of func­

tions measurable and essentially bounded on the intervalfO,l] with 
values from Rp , with the norm

8 x ¡I .= sup vrai I x (t) |
Osts-l

D e f i n i t i o n  3. Denote £y W^, (0, 1) the space of ab-*1 Osolutely continuous functions whose derivatives i  e L,(0, 1). Thep - A norm in 1) is defined by the formula



—DD e f i n i t i o n  4. Let I) be a subspace of the
space 1^,(0, 1) which contains functions satisfying the condition * A . —px(0) * 0. The norm in W^CO, 1) is of the form

1
¡¡x|| = J |x(t)|dt 

0
D e f i n i t i o n  5. Let stand for a space with the

Lebesgue measure defined on the E-field of subsets of [0, l]. De­
note by b.a (0, 1) the family of additive functions cp: E — ►R sa­
tisfying the conditions:

a) if A 6 E and (x( A) = 0, then tp(A) s 0,
b) the variation of the taction if is bounded, i.e. I if I (0 i)<0°* 
The space b.a (0, 1) is a Banach space with the norm ¡1 <p || =

lcpl(0 1} (cf. [6], Part III, § 7).
Remark 1. Let b*?a (0, 1) be the space of functions (f : E -- ►

RP in the form

(f (A) = (<jpx(A) . . . <pp( A))

where A e E, ^ 6 b . a ( 0 ,  1) for i = 1, 2, ..., P.
It is easy to show that the space b?a (0, 1) is a Banach space 

with the norm

- £  ivii(o, i)
1=i

pRemark 2. It can be proved that the space dual to L^CO, 1) is 
the space bPa (0, 1) (cf. [63. Part III, § 7 and [17], pp. 41, 
42).

Making use of the formula for a linear and continuous functio­
nal on L^iO, 1), we obtaia that any linear and continuous functio-Dnal on L^iO, 1) has the form



2. Some properties of coi;e-__auxi 1 i»ry lemmas

We prove some properties of cones of the same sense and the 
dual cones.

Lemma 1. Let X be a linear normed space, { c ^ a system of 
cones in X. If A: X X is a linear homoomorphism, then the sy­
stem of cones of the same sense' if snd only If the sy­
stem of cones { A C ^ ^ j i s  of the same sense.

P r o o f. Let us assume that the system {cj ̂ ^^ is oi the 
same sense. From the definition of cones of the same sense Ccf.[l4], 
def. 1) we have'

n

(1) VM > 0 3M, > 0, ... M > 0 Vx = x,1 n 1 = 1
where xie C i from the f8Ct that Hxll *• M 4t that lxiN *
< for i » 1, 2.'..., n.

We want to prove that

(2) VM'> 0 BMj > 0, .. . . > 0
n

vy * yit yt e aca i*l 1 1 1
from the fact that By U< H ' it follows that liy.li < for i =

Consider an arbitrary M > 0 and put M = (from the assump­
tion on the operator A it fallows that IIA II * Q)-n Then condition
(1) has the form 3 ^  > 0 .... > 0 Vx * 2Z xi* xi € Cj>fro«i

n , *,
the fact that II XI M  *1(11 4t iollows that for i
* 1, 2, ... , rT.

Let us multiply the first Inequality of condition

(3) by BAll. Then
n ’

(A) IIA || • II £  x.| < M'
i = l 1

From the properties of linear operators we have



Using (4) and (5), we obtain
n n

(6) II A xJ«*M' hence I y4II •£M '
i=l 1 i*l 1

where yA e AC^ for i * 1, 2» ... n.
Consider the second inequality of condition (3). Multiplying it 

by || A || and using the properties of the operator A, we obtain the 
conditions

( 7 )  a A 8 •  *xlH <  |  A II • Ma

(8) 1A xAI <11 A (I'll xtll < II All • M

Using (7) and (8), we have

(9) * Hy^l « I AXjKiAMIx^llAtt •

where y, € AC. for i * 1, 2, ..., n, hence M' = IIAII M.,thon con- 
dition (2) is satisfied. The system is of the same sense.

Now, let us assume that the system { A C ^ ^ j  is of the same 
sense. Than from the assumptions on the operator A-1 it follows 
that the system same sense, too.

Let us now consider the properties of the dual coqes. We prove 
some analogue of the Minkowski-Farkasz theorem in the case when 
the operator A is a linear homeomorphism.

Lemma 2. Let C be an arbitrary cone of the Banach space X. If 
A : X — X is a linear homeomorphism, then

(10) (AC)* = (A*)"1 C*

where A* is the operator ciual to A. .
P r o o f .  First, let us notice that if A is a linear homeo­

morphism, then A* and ( A 1)* are linear and continuous operators 
(cf. [16], § 27) and the following equality holds:

(11) ’(A*)-1 = (A'1 )*'

(cf. [6], Part VI, § 2), thus the operator (A*)-1 exists, is li­
near and continuous.

Consider an arbitrary element y* e (AC)*. From the definition 
of the dual cone (cf. [9], § 5) we have that



■ 12) (y*, A x) > 0

for any * 6  C,
Using the definition of the dual operator (cf. [6], § 0.1 from

(12) we obtain that

(13) (A*y*, x) > 0

for any x € C, where A* is the operator dual do A.
From inequality (13) it follows that the element A*y* e C* thus 

y* 6 (A*)“1 C*. Hence the following inclusion holds:

(14) (AC)* C  (A*)"1 C*

To obtain the proposition, we must show the opposite inclu­
sion. Let us consider an arbitrary element y* e (A*)-1 C*. Then 
there exists x* e C* such that

15) y* = (A*)“1**

By the definition of the dual cones, (x*, x) > 0 for any x e
6 C. From (15) we have that x* * A*y*, thus

(16) (A*y*. x) > 0

for any x e C .
By the definition of the dual operator, (y*, Ax) > 0 for any 

x e C, hence y* e (AC)*. The opposite inclusion has thus been
proved!

3, Formu]atlon of the problem.
The local extremum principle

Let us consider 
the functional

(17 )

the following optimal control problem minimize 

1
I(x, u) - J f°(x, u, t) tit 

o

under the constraints



(18) x = f(x, u, t)

(19) g(x, u, t) * 0

(20) . u(.) e U

where x(-) e 5^(0, 1), u( - ) e l£>(0, 1), u(t) € M c  Rr for t e 
€ [0,1]; the set U = {u(*) e 1̂ ,(0, 1) : u(t) e m}, the functions
f° : Rn x Rr x R -- *R, f : Rn x Rr x R Rn , g ; Rn x Rr x R -- ►
'->Rk , k < r.

We assume that:
(21) there exist derivatives f°, f°, f , f , g g which areA U A ' U A U

bounded for any (x, u);
(22) the functions f°, f, g, f f ^ ,  -f are continuous with re­

spect to (x, u) for any te [0, l] and measurable with re­
spect to t and the Frechet derivative (gx(x,u, t), gu(x,u,t)) 
is continuous with respect to (x, u) in the topology of the 
space L (5 J j  x L^, L*) (cf. [10], § 0.1);

(23) the set M is closed, convex and possesses a nonempty inte­
rior.

Remark 3. Problem (17)-(2Q) under assumptions (21)-(23) will 
be called problem I.

Let us put X » W ^  x l£,.
Denote by Fj : X — the operator defined by the formula

t
(24) Fj,(x, u)(t) ■* x(t) - J f(x(t), u(t), t)dt

0
kBy Fj : X — »-L̂ , let us denote the operator of the form

(25) Fj(x, u)(t) = g(x(t), u(t), t).

The function given by the formula

(26) L(x , u,Ajj, y|, y^) *

■=XQ I(x , u) ♦ (yj|, F2(x , u)) (y^, Fj(x, u))

where yj| 6 (ijj)*, yj e (L^)*, will be called then Lagrange fun-
* ction for problem I.

Using the generalization of the Oubovitskii-Milyutin method



from [14] and the properties of cones given before, we shall prove 
the local extremum principle for problem I.

T h e o r e m  1. If
1° (x°, u°) is an optimal process for problem I;
2° there exists a minor of rank k of the matrix gu(x°(t) u°(t) t) 

and a constant a > 0 such that|m g (x°(t), u°(t), tl>oi for t e 
e [0. l] a.e. , then there exist > 0 and functions e 1̂ ,(0, 1), 
u  £ b.ka (0, 1) such that

1°

2°

Su lM y + l t Vl l  > 0,

X = K  f f v ( x ° ( t ) ,  u ° ( t ) ,  t )  x dt +| f x(x°(t), u

* 1

+ | gx(x°(t) i u°(t), t)x du * 0

1 (x - fx(x°(t), u°(t), t) x) ^  (t)dt +
ô

I

0

for any x e
• 5° 1 * , .

x0 J f°(*°(t), u°(tj;'t) u°<t) dt + ,
0 '• . ■ ,

1 " ' "|- 
+ J f u(x°(t), u°(t), t) M>(t) dt «■ j  By(x0{t), U°(t>, t)u (t)dw *

1 „= min (A f f (x°(t), u (t), t)u(t)dt +
u«U Jo
+ j. fu(x°(t), u°(t), t)uCt)V(t)dt -

1
J g u(x°(t)» u°(t), t)u(t)du)
oRemark 4. Assumption 2 of this theorem is similar to the con­

dition of "regular controllability" from [3], [4] and [7]. We shall 
call it a condition of "strong regular controllability".



P r o o f .  Let us define the following seta:'

(27) Zl « {(x, u) e X , u e u}
(28) ' Zĵ * {(*■, u) 6 X : F^(x, u) » o}

for i ='2, 3, where the operators F^, Fj are given by formulae
(24), (25), respectively.

•Hence problem I formulated above may be represented in the form: 
determine the minimal value of the functional I (x, u) under the
condition (x, u) e O  Z,. Problem I contains two equality con-

i*l 1
straints: the set Z2 and Z? qiven by formula (20). In the proof we 
shall apply theorem 6 from [\i] generalizing the Oubovitskii-Milyu- 
tin theorem in the case of n equality constraints.

We shall find the following cones:
Co * DC (I(x°, u0)) - the cone of directions of decrease of 

the functional I at the point (x°, u°),
Cj = FC (Zp (x°, u0 )) - the cane of feasible directions for 

the set Z^ at the point (x°, u°),
Ci = TC <2i ’ u° ^  “ the cone oi tan9en't directions to

the set Zi at the point (x°, u°) for i * 2,3,
and the cones dual to them C*, C|, CJJ, Clj ({9], § 5-9). 
Proceeding identically as in ([9] § 7, 8), we derive formulae 

for the cones CQ  ̂ and C^. We have

(29) CQ * {(x, u) e X : r(f°(x°, u°, t)x ♦ f°(x®, u°, t)u)dt < 0 }
o

(30) Cj = {(x, u) € X ; u * X(u - u°)
where X>0, u e int u}, and we assume temporarily that CQ i 0.

The cones C* and C*j are given in the form (cf. T9], § 10):

(31) C* = {fo e X* : f0(x, u) = - X0 /(^(x^, u0 , t)x
0

+ fu(x°, u°, t)0)dt, X0 > 0}

(32) CJ = {f 1 6 X* : fjix, U) = fj(ii)

where fj is a functional supporting the set U = {u e L^, : u(t) e M 
at the point (x°, u0)},}.



The set Z2 is an equality constraint. The operator F? given in 
form (24) is known to be strongly continuously differentiable at 
the point (x°, u°) and its differential is defined by the formula 
(cf. [9], § 9):

(33) F2(x°, u°)(*> 0) = x(t) - 
t

- J (fx(x°, u°, t)x(t) + fu(x°, u°, t)0(t))dt

It is easy to show that F2 is regular at the point (x°, u°),
i.e. the equation

t . . .  
x - J(*x x + fu u)dt = a(t)

o
has a solution for any a(t) e W^.

Really, it is enough to differentiate the last equation and, 
afterwards, to put u(t) a 0. We obtain the equation in the form

x - fx x - ¿ - 0

where á e l", thus it is a nonhomogeneous linear differential e- 
quation with respect to rt which with the integrable functions f 
and á has a solution (cf. [17], Part II, § 4).

Thus the operator F2 satisfies the assumptions of the lusternik 
theorem and the cone C2, is of the form

(34) C2 = {(x, u)'e X : F'2(x°, u°)(x, g) = 0} =

= {(x, u) 6 X ¡ ? - |  (fx x + fu G)dt * o}
o

After differentiation of the equation from formula (34) we ob­
tain that

(35) C2 *{(x, ü)e X : S - fx 3 - fg 5 » o}
Now, we shall find the cone dual to C,. The con® C2 is a Sub­

space, hence the cone C| is of the form (cf. [9], § 10)

C2 = i f2 6 X* : f2(i. «.) * 0 

for any (x, u) e C2}.



Denote by A  the operator of the form

(36) A (x ,  u) = x - f x x - f u ii

A: x is a linear and continuous operator.
The cone C2 can be written in the form

(37) C2 * { ( x ,  u) 6 X : A ( x ,  u) = 0}

From (36), (37) and from the definition of the annulator of a 
subspace (cf. [lOj, § 0.1) we have that

(30)  CJ = (ke rA )1

Making use of the annulaxyr lemma (cf. [10] , § 0.1), we obtain 
the equality

(39) C*2 = ImA *

where A*  is the operator dual to A (cf. [10], § 0.1).
Let us consider an arbitrary f2 e CJ[. From (39) it follows 

that f2 e ImA*. The space dual to l"(0, 1) is l£>(0, 1), hence 
In A* -{y* e (W^j x L̂ ,)*: there exists an element x*6l£o(0,1) 
such that A*x* 3 y*}.

Thus, from the fact that f^ e ImA* it follows tjjat there e- 
xists an element V e  L^(0, 1) such that

(40) f2 = A * V

Using the definition of the dual operator and from (36) and 
(40) we obtain that

Ul) f2(x, u) x (A*M>,(x, u)) = (V, A (x, u)) =

= W ,  X - fxx- fuu)

From the formula of a linear and continuous functional on L^ 
(cf. [6], Part IV, § 5) and from (41) we have that
(42) f2(x, 0) = / ( *  - fxx - fu u) V(t)dt,

0
thus



The opposite inclusion follows from the definition of the cone
C2, hence
(43) CiJ = {f2 e X* : f2(x, u) * J (5-fxx-fuu)V(t)dt

0

where Vf € L» (0, 1)}.
The set Zj is an equality constraint, too. The operator Fj gi­

ven in form (25) i# strongly continuosly differentiable (cf.assum­
ption (2 2)) and its differential is given by the formula

(44) Fj(x°, u°)(X, u)(t) « gx(x°(t), u°(t), t)x(t) +

♦ 0u(x°(t), u°(t), t)u(t)

It is easy to notice that assumption 2° of the theorem, i.e the 
condition of "strong regular controllability" (cf. Remark 4) is 
the sufficient condition for regularity of the operator Fj.

Really, if this condition holds, then, putting x(t) s 0 and 
using the Cronecker-Cappelli lemma and the Cramer theorem (cf. [2], 
Part IV), we obtain that the equation

gx X(t) + gu u(t) = a(t)

has a solution (x(t), u(t)) e X for any a(t) e L^, .
Thus the operator Fj satisfies the assumptions of the Lusternik 

theorem (cf. [10], § 0 .2) and the cone tangent to set Z? at the 
point (x°, u°) is of the form
(45) C3 ={(x, u ) e X : F'3(x°, u ° ) ( x , u ) = o} =

* {Cx, u) e X : gxx + guu = o}
Proceeding analogously as in the case of the cone C2> we shall 

calculate the cone dual to Cj.
The cone Cj is a subspace, thus, as before, the cone Clj is of

the form

(46) C^ = {fj e X *  : fj(x, u) - 0 for any (x, u) e Cj}

Let us denote by T* the operator given by the formula



(47) r ( x ,  u) gxx + guu

It is obvious that V : Wj, x a linear and continuous o-
perator. The cone Cj car* be written in the form

(48) c 3 * {(x, u) e X : T Oi, u) • o }

From (46), (48) and the definition of the annulator of a sub« 
space we have that

(49) C* » (ker V ) i

Analogously as before, making use of the annulator lemma, we 
obtain that

(50) ^  * Imr*
where r* is the operator dual tor, i.e. r* : (L^, * ■— ►(W1̂  x L^)*.

Let fj be an arbitrary element of the cone Cj. Hence from (50) 
it follows that ty e Iml'*. The space dual to the space L^(0, 1) is
b*?a (0, 1) (cf. Remark 2), thus, from the fact that f, £ ImT* it• k follows that there exists an element w e b.a (0, 1) such that

(51) f3 = r * u

Using the definition of the dual operator and from (47) and
(51) we obtain that

(52) f3(x, u) = (r*u, (x, u))= (u,r(x, u) ) =

s (u, 9xx + Buu)
Making use of the formula for a linear and continuous functio­

nal on L̂ , and of Remark 2, we have
1

(53) f3(x, ii) * |  (gxx + guu) du

From the last equality it follows that if (x, u) e Cj, then 
f3(x, u) * 0, thus, analogously as in equality (43), the cone Cj 
is of the form

■. 1 •(54) * {f3 e X*: f3(x, u) = J  (gxx ♦ guu) d u
o



(ihfirB u  6 t) . 3 ( 0 , 1)}.
Now, we shall show that the cones calculated above satisfy the 

ssumptions of theorem 6 from [14].
Thus we must prove that
a) the cones C| and are of the same sense,
b) the following inclusion holds:

C2 n C3 C TC(Z2 n  2j)

First, we shall check condition a). We can show that the cones 
C' and CJ are of the same sense by using theorem 3 from [14]. 
For this purpose, we must reduce the cones C2 and Cj to the spe­
cial form.

Let us consider the case when k = r. In order to reduce the
cones C, and given by formulae (35) and (45), respectively,
to the form required in theorem 3 from [
linear and continuous operator A : yonto

‘ I 0 "
(55) A =

Sx 9u

the
X given by the formula

where I denotes the unit matrix of rank n.
For an arbitrary fixed te[0, l], the operator A is a ma­

trix of rank (n + r) and, according to assumption 2° of the theo­
rem the condition of "strong regular controllability" for k = r, 
the following condition holds:

(56) det A * det gy > ot

for t €[0, l] a.e.
Thus, the operator A“1 exists (cf. [2], Part IV, the Cramer

theorem), is linear and continuous (cf. [13], § 5, the theorem on 
sn inverse operator) and its of the form

I 0
(57) -1 „ 

'9u 9x

Then, using formulae (35) and (45), it is easy to calculate 
that the cones Xc2 and Xc^ are of the form



(58) AC2 = {(x, u) e X : * » (fx - f ^ ' 1 flx)x ^ f ^ 1?.}

(59) ac3 » { ( x ,  u) e x : gyg^u + (gx - g " 1gK)x = 0 }  =•

= {(x, u) € X : u = 0 } = W^J x { o }

Now, let us consider the cone AC2> The differential equation 
from condition (58) is, for a fixed control tT(t), a nonhomogeneous 
linear equation with respect to x(t) thus, denoting

« 0 )  E(t) . [„ - t ug - \

U l >  F(«> . fus-J

we obtain that the solution of this equation is of the form (cf.
[17], Part II, § A):

1 .(62) x(t) = Y(t) j Y(t) f(t)u(t)dt
o

where Y : [0, lJ-^B (Rn , Rn) is art absolutely continuous function 
satisfying the equation ‘

(63) Y(t) 3 E(t)Y(t), Y(0) n I

Hence, making use of (62), the cone AC2 can be written in the
form

(64) Xc2 = {(x, u) e X : x * Nu where

NO * Y(t) f V(t)_1F(t)u(t)dt, 
o ’

Y(t) satisfies equation (63), the operators E(t) 
and F(t) are given by formulae (60) and (61), respectively}

Obviously, N is a linear and continuous operator mapping in- 
t0 5n -

The cones Xc2 and ACj of forms (64) and (59), respectively, sa­
tisfy the assumptions of theorem 3 from [14] , Using this theorem, 
we obtain that the cones (£c2)* and (XCj)* are of the same 
sense.



Now, we shall apply lemma 2 to the cones C2 , Cj and the opera­
tor A. We obtain the equalities

(AC2)* ■ (A»)_1C5 

(AC3)* = (A * ) _ i C5

In this way we have obtained the condition that the system of 
cones (y*)'1C2, (S’*)~ ^ i s  of the same sense. Applying lemma 1 to 
this system, we obtain that the system of cones C£, C^ is of the 
same sense, too.

We shall also consider the case when k<r. In this case, to re­
duce the cones C2 and C? given by formulae (35) and (45), respec­
tively, to the form required in theorem 3 from [14], we shall ap­
ply the linear and continuous operator 'a' : X ofl X of the form

(65) A a
'21

where is some linear and continuous operator on the space W ^
with values from l£> , 1^ is the unit matrix of rank n, I2 is the 
unit matrix of rank r.

For any fixed te [o, l], A is a matrix of rank (n ♦ r) and

det "A = 1

thus the operator X”1 exists, is linear and continuous (cf. [16] 
§ 15, the theorem on an inverse operator).

Let us calculate, as before, the images of C2 and Cj by using 
the operator ”A\ Making use of formulae (35), (45) and (65), we can 
easily calculate that

(66)
(67)

TCj = {(x, u) e X : g(ju + (gx - guA ^ )  x * o}
AC- {(*, u) 6 X (f. fuA21} * + fuu >

Let us consider the equation

(68) gx - b u a21 = o

with an unknown operator A^j defined on W^j,



Let us analyse assumption 2° of this theorem. We denote by g' 
the matrix made from the matrix g(j by omitting (r - k) columns 
and such that the determinant of g^ satisfies assumption 2° of the 
theorem. (We can assume that we omit the last (r - k) columns and 
the problem will be of the same generality). Then assumption 2° 
means that there exists a constanta > 0  such that

(69) Idet g^(x°(t), u°(t), t)I> o# for teffl, l] a.e.

hence the operator exists (cf. [2], Part IV the Cramer theo­
rem), is linear and continuous (cf. [13], § 15, the theorem on an 
inverse operator).

Hence, as can easily be een, it is enough to put

(70) a21 r 1 • gwu y x

For any fixed te[0, l], is a matrix of rank r • n, 0 is
a zero matrix of rank (r - k) n. From the previous considerations 
it follows that g is a linear and continuous operator from the
space into LM , thus, it is easy to see that of form
(70) is a linear and continuous operator mapping the space W?, into
LrLoo-

Using the Cramer theorem (cf. [2], Part IV), after simple 
calculations we obtain that the operator , of form (70) sati­
sfies equation (68), thus the cone.AC^ can be written in the form

(71) AC, * iijj x {u e LI , : gjj * o}

Proceeding analogously as in the case k=r, we can reduce the 
cone 'A'Cj to the form

(72) ^ 2  = {(x, u) e X : x = Su

where S : L^,— is some linear and continuous operator}.
Analogously as before, we apply theorem 3 from [14] and, next, 

lemmas 2 and 1 to the cones AC2 and ACj given by formulae (72) and
(71), respectively. We obtain that in the case k < r the cones 
C)$ and C^ are of the same sense, too.

In this way we have checked completely that condition a) is sa­
tisfied.



Now, we must verify condition b), i.e. the inclusion

C2 a  C3 C TC(Z2 n Zj)
where C2 and C3 are given by formulae (34), (45), respectively,Z2 
and Z3 by (28).

For this purpose, it is enough to show that the operator F 
X — x L̂ , of the form

(73) F(x, u) = (F2(x, u), Fj(x, u))

where F2 and F3 are of forms (24) and (25), respectively, is regular 
at the point (x°, u°) 6 X.

Obviously, the operator F given in form (73) is Fr^chet diffe­
rentiable at the point (x°, u°) and its differential is of the form

(74) F'(x°, u°)(x , 0) = (F^(x°, u°)(x, u),

F'3( x° ,  u° ) ( x , u ) )

From the definition of a regular operator (cf. [10], § 0.2) and 
from the formulae for differentials (33), (44) and (74) it follows 
that, to prove the regularity of the operator F, it is enough to 
show that the system of equations

' t ' •
(75) x(t) - Ji^xit) ♦. fuu(t))dt = yj(t)

o
(76)  gxx + guu =  y2( t )

has a solution for any y^ e W^, y2 e L^.
Let us consider, as before, two cases.
If k=r, then the condition of "strong regular controllability" 

implies, as we have shown before, the existence of the inverse o- 
perator g * 1 and equation (76) can be written in the form ’

u = -g' 1 gxx ♦ g- 1 y2

for any y2 6 L̂ , .
We can put the last equation in (76) to obtain

t

where yr e W^, y2 e L^.



After differentiation of (77) we get a linear differential e- 
quation with respect to x in the form

(78) x = A(t)x + B(t)
-1 -1 where A(t) = fx - fugu and B(t) = fygu y2 + ÿj are integrable

functions, thus equation (77) has a solution xew", for any (y^ 
y2) e w j l x L* (cf. [17], Part IX, § 4).

.Let us consider the second case, i.e. assume that k < r.
Let g^ be a square matrix of rank k which we considered in con­

dition a), i.e. such that its determinant satisfies condition (69). 
We denote

(79) 3(t) = 'u(t), 0 ...0) e L„
where u(t) = (uj(t) ... uk(t)) e L^.

Equations (75) and (76) are satisfied for any Ge L̂ , , thus, 
in the particular case, for u(t) given by formula (79).

The operator g^ is invertiable (cf. the proof of condition a)), 
thus, using (79), we can rewrite equation (76) in the form

« ó  ■ -r„‘ gxx * r u‘ yz

Í OE  any y 2 e  (.£.
After this, we can put a control of the form

u^ 1 gxx + guy2 , 0 ... 0 )

where y2 € L,,,, in (75) to obtain, as in the previous case, the 
nonhomogeneous differential equation which has a solution x e w!^ 
for any (yx , y?) e x L¿.

We have thus proved in both cases that the operator F of form
(73) is regular.

Let us notice that

(80) Z2 Z3 * {(x, u) e X ; F(x, u) « o}

The operator F satisfies the assumptions of the Lusternik theo­
rem (cf. [lO], § 0.2), thus, making use of this theorem, we have 
that

(81) TC (Z2 n Z 3) = {(x, G) e X : F' (x°, u°)(x, ¡3) « o}



From the lost condition, (74) and the formulae for the cones 
C2 and Cj we obtain

TC (Z2 n Z 3) - {(X, u) € X : F^ix0 , u°)(x, u) = 0

{(5, u) € X : F'3 (x°, u°)(x, u) = o} = C2 a C?

whence condition b) holds.
We have /thus checked all the assumptions we obtain that there 

exist functionals fi e Cf, i = 0, 1, 2, 3, not vanishing simul­
taneously and such that

(82) f0 * fl + f 2 * f3 V °
After putting the formulae for the functionals f^ e CJ, i *

= 0, 1, 2, 3 (31), (32), (43), (54), respectively in (82) we 
have the equation
(83) J(fx°(x°(t), u°(t), t)x(t) +

o
♦ fu0 (x°(t), u°(t),t)u(t))dt * t \ (u )+

1
♦ J ( x  - fx(x°(t), u°(t), t)x(t) ♦

♦ fu(x°(t), U ° ( t ) ,  t)u(t))V(t)dt +
• 1

♦ J( 0x(x°(t), u°(t), t)x(t) +

♦ gu(x°(t>; u°(t), t)u(t))du = 0

for any (x, u)eX, where V e  L®(0, 1), u  e b.a(0, 1).
Let us first put (x, u) * (x, 0) 6 X in (83) and, next 

(x, u) = (0, u) e X. We obtain the following equations

+ J(x - fx(x°(t), u°(t), t)x(t))V(t)dt 
° 1

+ J g x(x0 (t), u°(t), t)x(t)du 0

|fx0 (x° (t), u°(t), t)x(t)dt *



1
+ Ç fg(x°(t), u°(t), t)G(t) V(t)dt ♦

- ^ gu(x°(t), u°(t), t)G(t)du* f'(u)

for any (x, u) € X, where f'̂ is a functional supporting the set 
at the point u°.

Equation (84) is condition 2° of the proposition. From equation 
(85) and the definition of a supporting functional (cf. [9], § 4) 
we obtain the extremum condition

(B6 ) XQ |f"(x°(t), u°(t), t) u°(t)dt +
0

1
* j‘fu(x°(t), u°(t), t)u°(t)V(t)dt ♦

- J g u(x°(t), u°(t), t)u°(t)du *
1

» rain ( V  ffil°(x°(t), u°(t), t)u(t)dt + ut U u
1

♦ J f u(x°(t), u°(t), t)D(t)v(t)dt ♦

+0 fBu(x°(t)- t)ü(t)dw)

Finally, we must show that I A,q| + BV|+|uB>0 . This condition fol­
lows from equality (85). Really, if * 0, V = 0 , u  = 0, then fQ *
* f2 3 fj E 0, and, by equality (85), fj * 0, but this contra­
dicts the proposition of theorem 6 from [14].

Thus, this theorem is proved under the assumption that the cone 
of directions of decrease of the functional

1
CQ » {<x, u) « X : J (f° x + fu°G)dt <  0 }

. o
is nonempty.

Let us assume that CQ <= 0.
Then, for any (x, u) 6 X.

(B7) j (f® 5U fu°u)dt - 0

In this case, to prove the theorem, it is enough to put A. =



» 1 , ^ = 0 6  u = 0 € bk a (0 , 1, f j = Ü; then, from '(87) we
get the equation

+ f(x - fxx - fuü)V(t)dt + J ( g xx + guG)du= 0
o

for any (x, u) e X. .
Proceeding analogously as in the case CQ i 0 , we obtain the

proposition.
Remark 5. Let us consider the situation in which the extremum

principle can be written in a simpler form, i.e. the situation inkwbichu= (uj, u 2 , ...,uk) e b.a (0 , 1) is such that the func­
tions , i « 1, 2, ... k are measures. In this case we apply the
Radon-Nikodym theorem (cf. [6 ]) and Remark 2 of this work. Wekobtain that there exists a function v(*)e Lj such that

Applying (8 8) to conditions 2° and 3° of the theorem and 
using the Dubois-Raymond lemma (cf. [ 8], Part I, § 3) and the 
properties of absolutely contiguous functions (cf. [ill, Par* VII,

( 88) V(t)dt

§ 4), after simple calculations we obtain that the proposition of
Theorem 1 can be reduced to' the form: there exist X > 0, v(*)eK ne 1.̂  and an absolutely continuous function : [0 , l]— ►R , not va­
nishing simultaneously satisfying the equation

and such that

fu° - fu‘P" 9*uV> u - 0
for any u e U and te[0, l] a e .
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Urszula Łędzewicz-Kowalewska

ZASADA EKSTREMUM DLA ZAOAN 
STEROWANIA OPTYMALNEGO Z MIESZANYMI OGRANICZENIAMI

W niniejszej pracy wykazana jest zasada ekstremum dla zadart sterowania opty­
malnego z ograniczeniami typu równości na współrzędne fazowe i sterowanie w 
oparciu o uogólnienie metody Oubowickiego-Miluttna zawarte w [14]. Zadanie 
badane w niniejszej pracy różni się od zadania rozważanego w [15J wystąpieniem 
sterowania w ograniczeniu typu równości oraz nieco inną metodą obliczania stoż­
ków. Zasada ekstremum przedstawiana tutaj, zawiera założenie tzw. wzmocnionej 
regularnej sterowalności, które w nieco słabszej postaci występuje również w 
[lj, [3], [7], jednak rozważane tam zadania pozbawione aą ograniczenia u(-) e 
6 U oraz, jak już nadmieniłam, zastosowana jest tam inna metoda dowodu.


