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FUNCTIONS WITH FIBRES LARGE ON EACH
NONVOID OPEN SET

Let X be an infinite set. For ideals I,J C P(X) and a family
F C P(X), we give conditions guaranteeing the existence of an
f : X — X which is constant on X\ C for some C € J and fulfils
the condition: (x¥) f~'[{z}JNV ¢ I forany z € X and V € F.
The result and its proof are related to the investigations made by
H.I. Miller and W. Poreda. In the case when X forms a perfect
Polish space and F' consists of all nonvoid open sets, we study ideals I
admitting an f : X — X which satisfies (*) and is Borel measurable.

1. INTRODUCTION

Carathéodory showed in 5 that there exists a Lebesgue measurable
function f : R — R such that f~![E] N U has positive measure for
each set F of positive measure and each nondegenerate interval U,
A modified version employing the Baire category was obtained by
H. Miller in [7]. He proved the existence of a Lebesgue measurable
f : R — R such that f~![E]N U is of the second category for each
set F of second category and each nondegenerate interval U. He
even obtained (in ZFC) a stronger result where E in f~'[E|NU is
replaced by {z} (for any z € R). The same was shown in [11] in
a different way (Continuum Hypothesis used there can be removed
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which was observed by K.P.S. Bhashara Rao in [3]). In Section 2 we
prove a more general result with the help of a mixed method joining
the tricks from [7] and [11). In particular, we get a simple proof in
ZFC, good for the measure and category cases. Since there is no
uncountable disjoint family of measurable sets of positive measure
(this is the so-called countable chain condition, abbr. ccc), there is
no Lebesgue measurable f : R — R such that f~![{z}] has positive
measure for each X € R. The analogous observation can be done for
the category case. However, there are natural examples of ideals J
(which do not satisfy ccc) admitting a Borel measurable f:R—-R
whose all fibres are large (i.e. not in I). That property, called (M),
was introduced in [2] for ideals of subsets of a perfect Polish space. In
Section 2 of the present paper, we study a stronger property, called
(M*), which requires the fibres of f to be large on each nonvoid open
set.

In general, we consider ideals I of subsets of an infinite set X and
always assume that X ¢ I. A subfamily H of I is called a base of I if
each A € I is contained in some B € H. We say that two ideals I and
J are orthogonal if there are B € I and C € J such that BUC = X.

2. REMARKS ON MILLER’S RESULT

Recall the following theorem due to Abian and Miller (see [1] and
[7]) which generalizes the result of [12].

Theorem 2.1. Let X be a set of infinite cardinality k. Let A be a
family of at most k subsets of X, each having cardinality . Denote
by A(A) the family of all D C X such that U N D # () for each
U € A. Then, for each cardinal A < &, the set X can be expressed as
the union of \ pairwise disjoint sets belonging to A(A).

Theorem 2.2. Assume that I and J are orthogonal ideals of subsets
of a set X of cardinality k. Let I have a base H of size <k and let
F C P(X) be a given family of size < k such that |V \ E| = & for any
V € F and E € H. Then, for each 2o € X, there are a set C € J
and a function f : X — X such that f(z) = zo for eachz € X \ C,



FUNCTIONS WITH FIBRES LARGE ON OPEN SET 5

and

(%) F*{z )NV ¢ I forany € X and V € F.

Proof. Put A= {V\E:V € F and E € H} and apply Theorem
1.1 to it. Then X can be expressed as the union of a disjoint family
A* C A(A) of size k. Let X = BUC where B € I, C € J and
BN C =10. Choose any bijection h : A* — X and define f: X — X
as follows. If z € B, put f(z) = 2y, and if ¢ B, choose a unique
D, € A* such that z € D, and put f(z) = h(D.). Then, obviously,
f(z) =a¢forz € X \C. If z € X, then

-1 for . Zo,
i) { S i
(z)UB for z = .
Consider any V € F. Observe that V N D ¢ I for each D € A(A).
Indeed, if VN D € I for some D € A(A), we choose E € H such that
VNDC E. We infer that V\ E € A and (V \ E)N D = (), which
contradicts the assumption D € A(A). Now, taking D = h~1(z), we
have h='(z) NV ¢ I. Since B € I, we get f'[{z}]NV ¢ I.

In particular, let X = R and let I (resp. J) be the ideal of all
Lebesgue null sets (resp. meager sets) in R. It is well kown that the
family H of all G null sets (resp. F, meager sets) forms a base of
I (resp. J), its cardinality equals ¢ = |R|, and [V \ E| = ¢ for any
open V # ) and E € H. Moreover, I and J are orthogonal (see [10]).
Thus from Theorem 2.2 we derive

Corollary 2.3. (a) Thereisan f : R — R suchthat {z € R: f(z) #
0} is meager (thus f has the Baire property) and f~'[{z}] NV has
positive outer measure for any * € R and open V # ().

(b) (see[7], [11]). Thereisan f : R — R such that {z € R: f(z) #
0} is a null set (thus f is Lebesgue measurable) and f~'[{z}] NV is
of the second category for any x € R and open V # ).

Another interesting pair of orthogonal ideals to which Theorem
2.2 can be applied is described in [9], Proposition 5.
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3. PROPERTY (M*)

Now, we add the requirement of the Borel measurability of f to
condition (*) formulated in Theorem 2.2. Let X be a perfect Polish
space and I - an ideal of subsets of X. We say (cf. [2]) that I has
property (M) (resp. property (M*)) if there is a Borel measurable
function f : X — X such that f~'[{z}] ¢ I for each z € X (resp.
f'{z}]NV ¢ I for any z € X and open V # (). We then say that
[ realizes (M) (resp. (M*)) for I. Obviously, (M*) implies (M). We
shall show that the converse is false (Example 3.5).

Remarks. (a) If I and J are ideals of subsets of X such that I C J
and J has (M) (resp. (M*)), then I has (M) (resp. (M*)).

(b) Since any two perfect Polish space are Borel isomorphic (see
(8], 1 G4), we may replace f : X — X in the definition of (M) and
(M*) by f: X — Y for a suitable perfect Polish Y.

In [2], several examples of ideals with property (M) are given. Our
aim is to find nontrivial ideals with property (M*).

It was noticed in [4], Ex. 1.3, p. 4, that there exists a Borel function
f from (0,1) into (0,1) such that f~'[{z}] is dense for each z € (0,1)
(this was treated as a strong version of the Darboux property). The
same can be inferred from [2], Th. 3.4, p. 44, where another method
leads to a Borel mapping from a perfect Polish space X onto the
Cantor space, with all fibres dense in X. In fact, the existence of
such a mapping implies that the ideal of all nowhere dense sets in X
has property (M*). Our next example of an ideal with property (M*)
is also derived from [2]. It turns out that the respective proof for (A1)
given in [2] (generalizing Mauldin’s construction from [6]) works for
(M*), but some parts require a more detailed analysis which will be
done below.

Theorem 3.2 (cf.[2], Th.3.3, p. 42). Let I be a o-ideal of subsets
of a perfect Polish space X. Assume that I contains all singletons,
does not contain nonempty open sets and has a base consisting of G5
sets. Then the o-ideal J of all sets that can be covered by F, sets
from I has property (M*).

A nonempty closed set F' C X will be called I-perfect if FNV # ()
implies FNV ¢ I for any open V C X.



FUNCTIONS WITH FIBRES LARGE ON OPEN SET 7

Let us explain some notation. Let w = {0,1,2,...}. By 2<%
and 2¥ we denote, respectively, the sets of all finite and infinite
sequences of zeros and ones. The empty sequence (which also be-
longs to 2<“) will be written as ( ). By s0 and sl we denote the
respective extensions of s € 2<%, For z € 2% and n € w, put
z|n = (2(0), 2(1),... ,2(n — 1)). The set 2¥; endowed with the prod-
uct topology, is called the Cantor space. It forms a perfect Polish
space.

The following lemma results immediately from the contruction
given in [2], pp. 42-43.

Lemma 3.3. Under the assumptions of Theorem 3.2, there is a fam-
ily {C!: s € 2<¥,n € w} of I-perfect sets with the properties:

(1) for each nonempty open V C X, there is an n € w such that
CHEVi

(2) for any s € 2<¥, n € w and a nonempty V relatively open in
C?!, there is an m € w such that CjgUCH C V;

(3) for any s € 2<¥ and m € w, the condition CI§ N C™M =
holds and there is an n € w such that Cjg U C? C C™.

Lemma 3.4. Under the assumptions of Theorem 3.2, if a family
{Cr: s € 2<% n € w} fulfils conditions (1)-(2) of Lemma 3.3, then,
for any z € 2¥, a set H € J and a nonempty open V C X there
exists a sequence (n; : ¢ € w) of nonnegative integers such that

0#()CriCV\H

Zjg=
i1Ew

Proof. Since H € J, there is a sequence of closed sets F, € I such
that H C |J, ¢, Fn- The set V' \ Fj is open and nonempty (in fact,
V\Fy ¢ Isince V ¢1Iand F, € I). By (1), pick ng € w so that

C(";’ C V' \ Fy. For any i € w, having n; chosen, pick nij4; € w so
that CZ‘;.:_‘I C i \ Fiqa (we use (2)); here CJi \ Fiya is nonempty
(in fact, it does not belong to I) and relatively open in :I" From

the classical Cantor theorem we get C' = ;¢ C1j; # 0. Of course,
C is disjoint from | J;- , F}, and, consequently, from H.
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Proof of Theorem $.2. We use the sets C' from Lemma 2.3. Put
Cs = Upneo, CF for s € 2<¢. Then we have

(a) CsoNCy =0 for all s € 2<v,

(b) CyoUC4 CC, for all s € 2<v,
which follows from (3). Define B = (¢, U.esw C:fn- It is not hard
to prove (see [2]) that:

(c) B is a Borel set;

(d) for each z € B, there is a unique h(z) € 2¢ such that = €

nnEw Ch(z)ln;
(e) the function h : B — 2¥ defined in (d) is Borel measurable;
() 27 [{z}] =Nnew Cn for each z € 2.

Let g : X — 2¥ be a fixed Borel measurable extension of h. By
(f), we have g='[{z}] 2 (Npew C:jn- Consider any nonempty open
V C X. It suffices to show that V N (,c, C:n & J. Suppose that
VNNaewC:in = H € J. According to Lemma 3.4, there is a sequence
(ni : i € w) for which § # ;e CNi €V \ H. On the other hand

t€Ew “z|i =

vncxcvn()Cy=H,

n€w iEw

a contradiction.

By Theorem 3.2, the ideal of sets that can be covered by F,
Lebesgue null sets has (M*).

Example 3.5. Let I consist of all sets A C R such that AN(—o0,0)
is of Lebesgue measure zero and A N [0, 00) is contained in an F, set
of measure zero. Then I forms a o-ideal of subsets of R. Observe that
I has property (M). Indeed, the family I, = {A € I: A C [0,00)}
is a o-ideal of subsets of X = [0, c0), which fulfils the assumptions of
Theorem 3.2. Hence it has property (M*) and, consequently, prop-.
erty (M) (in X). Let f; : X — R realize property (M) for L. If we
extend fi to a Borel f : R — R, then f realizes property (M) for I.
On the other hand, I has not (M*). Indeed, suppose that ¢ : R — R
realizes (M*) for I. Then {g~![{y}] N (—00,0) : y € R} forms an un-
countable disjoint family of Borel sets with positive measure, which
is impossible.
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In the above example, I is not translation-invariant, i.e. the con-
dition
A+z€l forany A€l and =z €R,

where A+ z = {a+ z : a € A}, is not fulfilled. So, it would be
interesting to find an example omitting that fault.

Let us note that Example 3.5 essentially uses the fact that property
(M) (unlike (M*)) need not be hereditary with respect to open sets.
To be more precise, let us say that an ideal I has property (M') if
INP(V) has (M) (in V) for any nonvoid open V C X. Obviously,
(M*) = (M') = (M). Our example shows, in fact, that (M) = (M")
is false. This suggests the question whether (M') = (M*) must hold.

Acknowledgement. I would like to thank W. Poreda for her
interest and valuable remarks.
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Marek Balcerzak

FUNKCJE O DUZYCH WLOKNACH
NA KAZDYM NIEPUSTYM
ZBIORZE OTWARTYM

Niech X bedzie zbiorem nieskoriczonym. Dla pewnych idealéw
I,J € P(X) i rodziny F C P(X) uzyskano warunki dostateczne ist-
nienia funkcji f : X — X stalej na X \ C dla pewnego C € J oraz
spelniajacej warunek: (x) f~'[{z}]NV ¢ I dla dowolnych z € X
iV € F. Wynik i jego dowdd wigza si¢ z wezeéniejszymi bada-
niami H. Millera i W. Poredy. W przypadku gdy X jest doskonaly
przestrzenia polska oraz F sklada sig z niepustych zbioréw otwartych,
badamy ideaty I, dla ktérych istnieje borelowska funkcja f: X — X
spelniajaca (*).
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