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ESTIMATION OF THE FUNCTIONAL |a3 - a â l 

IN THE CLASS S OF HOLOMORPHIC AND UNIVALENT FUNCTIONS 

FOR a COMPLEX

In this paper there has been investigated a maximal value of the
2

functional la^ - a â l in the well-known class S of functions ho- 

lomorphic and univalent in the unit disc, where a is an arbitrary 

complex parameter. In the investigations carried out here use is 

made of the variational method and, in particular, of the differen- 

tial-functional equation of A. C. Schaeffer and D. C. Spencer.

1. INTRODUCTION

In 1952 G o l u z i n  [1] for the first time introduced 

to the literature the functional

(1> Uj  - a a^l,

defined in the class S of functions holomorphic and univalent in 

the disc K = {z : |z| < 1} of the form

(2) f(z) = z + a2z2 + a^z3 + ...

\

°n the basis of L6wner's theory, he determined the upper bound 

°f functional (1) for each fixed a e < 0,1). For any real a, 

this functional was estimated by J e n k i n s  131 In 1960.

In the subsequent years, a lot of mathematicians took up 

their investigations of functional (1) for a real in other



classes of univalent functions. In particular, in the family of 

functions of form (2), holomorphic, univalent and bounded in the 

disc K, the uppar bound of functional (1) was obtained, among , 

others, by J a k u b o w s k i  [2] for any real a.

In the present paper there has been taken up a problem of 

determining the upper bound of functional (1) defined in the 

family S for any a e C ( C - the open plane) on the basis of 

the variational method.

For our purposes, it will be most convenient to make use of 

the differential-functional equation for extremal functions in 

the class S, obtained by S c h a e f f e r  and 8 p e n c e r 

[«]•

2. EQUATION FOR EXTREMAL FUNCTIONS

Let us consider a functional

(3) H(f) = re (a, - a a~),

defined in the class S, where ta is any complex number. The fa-

mily S is compact, and functional (3) - continuous, so there 

exists a function of the class S for which it attains its upp-

er bound. In the sequel, such functions will be called extremal

ones.

Functional (3) satisfies the assumptions of the , Schaeffer- 

-Spencer theorem [6], therefore each extremal function of form 

(2) satisfies the following equation _

(4)
z f'(z)

f(2) J

1 + 2 (1 - a)a2f(z)

f2(z)

z4 + 2(1-5)a2z3 + 2Bq z2 + 2(1-a)a2z + 1
z e K,

where



with that BQ > O, and the right-hand side of equation (4) is 

non-negative on the circle Izl » 1  and possesses on it at least 

one double root.

Since Bq > O, from (5) it follows that, for each extremal 

function satisfying equation (4),

2 2 re(a3 - a a,) ■ a3 - a a2-

Putting

(6) u » 2 (1 - o)a,,

in (4), we get

(7)
z r  (z) 

f(z)

2 1 + uf(u) Z4 + UZ3 + 2Boz2 + uz + 1 2 6 K. 

f2(z) z2

Consequently, the determination of the upper bound of func-

tional (3) for any fixed a e C is reduced to the finding of 

suitable functions that satisfy equation (7). It is worth re-

siling here that equation (7) is only a necessary condition for 

the function f(z) to be an extremal one.

Our virtual considerations will be preceded by a few remarks 

Concerning general properties of equation (7) and extremal func-

tions .

Let us put

(8> N(z)

4 3 2
z + uz + 2B z + uz + 1n

z2

It follows from general properties of equation (4) that func- 

tion (8) is factorized in the following way

ill) 2 2 -iff -2iV
(9) N(z) - <» - e *) <« - te -z + e „_) #

z

where e (-3T, 31 >, t > 2.

By comparing (8) and (9), we obtain the relations



( 10) re u * -(t + 2) cos V, 

im u = - (t - 2) sin Y.

and

(1 1 ) B ■** t + cos 2N>. o

Let a be any fixed complex number, and f - an extremal func-

tion of form (2). Put •

(1 2)
2 3

g(z) * -f(-z) * z - a2z + a3z + ...

Note that g(z) e S and H(f) - H(g). So, it f ia an extremal 

function, then function (12) has the same property. Let us next 

notice that, if f is an extremal function, then the functional
Q ■■■■ ■■ .mm

re(a3 - a a.,) attains its maximum for the function h(z) * f(z), 

the respective extremal values being equal to each other.

It follows from the above that while considering equation 

(7) we may confine ourselves to u's such that re u < 0 and im 

u < 0, which, in view of (10), is equivalent to the condition 

■V « < 0, 2f- >.

Finally, taking into account all the factorizations of func-

tion (8) as well as the c?ses u 1 0 and u ■ 0, it is easy to 

prove that equation (7) ■ can only be of the form

(a)
f (  z)l2 1 + uf(z) (z - zq )2(z - zn)(z - z2)

f (z) f2(z)
, u ¥ 0,

or

(b)
Z £'(*)]2 1 + uf(z) (z - zq )2 (z - zo)2

«(*) f2(z)
u * °* zo * V

or

(c)
z f'(z) 

f (z)

1 + Uf(z) _ (z - zQ) _ u ^ 0i 

f2(z) z2



or

<d)
z f'(z)1 2 1 (z - z ) 2 (z - z ) 2

- -  * .  -  V
f (z)

where zQ ■ ei'*>, ẑ  • g ei(̂ , z2 “ Y~' 0 < g < 1, \|> e < 0, 

3T2 >, (p e R (R - the set of real numbers).

In sections 3, 4, 5 and 6 of the paper we shall be succes-

sively concerned with a thorough analysis of all solutions to 

equations of form (a), (b), (c) and (d).

3. EQUATION OF FORM (a)

Let us first consider the case when equation (7) is of form

(a). By comparing the right-hand sides of (7) and (a), we get

d 3 )  *i “ < ? V  Z 2 “ * V

(14) u * -2e"i1p -<£ + 4-)el V ,
s

(15) Bq * £ + ~  + cos 2 .

Note that relations (14) and (15) are Identical with (10) and (11) 

for t «= jO + £•.

From formulae (5) and (15) it can be seen that the value of 

the expression (a  ̂- a for an extremal function satisfying

an equation of form (a) is determined by two real parameters V 

and g . Hence it appears that, in order to determine the upper 

bound of functional (3), one has to find some relationships be-

tween , £ and a. Our further considerations will concern 

the seeking for these relationships.

In virture of (13), equation (a) is equivalent to



In this equation we shall introduce new variables. For the pur-

pose, let us notice that the homography

1 ~ i zoz
(17) «(*) - T - f zoz

“IV -iV
transforms the simply connected domain K' * K - < je ,e > 

onto the simply Connected domain

K" - ( u ! lul < }̂ - (- |, O >,

with that

(18) u>(0) =* 1, lim u(z) * 0.
Z - 2  ,

Z 6 K'

Define in K" a mapping

(19) s - /w 1, v/T * 1.

Let us further notice that, if a function w - f(z) satisfies 

equation (a), i.e. (16), then’ D' * f(K') is a simply connected

domain containing zero, and

(20) lim f (z) * - -j.
z - z1

Z€ K'

Since D' is a domain not containing the points (~) and oo , 

there exists in it a unique branch of the root

(21) X (w) • V~\ + uw' , y T » 1,

Moreover,

(22) lim \T\ - uw' = 0.
1w — —  
u

From the above considerations .follows



RemarJç 1. By a suitable superposition of the functions ex-

pressed by formulae (17), (19), (21) and of w * f(z), z e K ’,
1

-We can define in the domain re s > O and I si < ~-r* a func-
v'g'

tion Z - T(s). The function is holomorphic and univalent in 

this domain; what is more,

T ( 1 ) « 1, lim T(s) » 0. 
s - 0

For z e K ’, equation (16) is written in the fo rm

________  / ; - i v
2 f  (Z) ■/1 + U f (Z)’ (1 - Z z)(1 ~ p Z z) -i/ i - PZ.Z 

(5D ---- -- i__________  ________ Q g O V _____K_O
‘ ' f(z) f(z) z " '

where we have taken those branches of roots which assume the 

value 1 for z » 0 and w *> 0, respectively.

By introducing in equation (23) the new variables 1 and s, 

defined by (21) and (19), and making use of Remark l, after scne 

transformations we obtain

(24)
T2 dT 1 (1 - f 2)2(s2 - £> )s2(1 - gzo2)

(1 - T ‘) ds z q (s - 1) (g s* - 1)
I

where

2 1 - i ̂i -s lzo> --—Hr- 
1 - p

Integrating equation (24), we g e t

- (25> f i  -
o *•

+ A2 lo g  T T c s  " A3 ( s  - 1 + s + 1 )

1 - s .
lQg r r s +

■ A4 - 1 + fiS. 1 1 )] + C '



where

2 - M + 3a2)a
2

qr A4 * 1 - g2q.

while C is a constant. In (25) we have taken those branches of 

logarithms which assume the value zero at the points s « 0 and 

T = 0, respectively.
We shall now determine the constant C. For the purpose, note 

that when z — z^, then, by (20) as well as (22), (18) and (19), 

we get s - 0 and T -• 0. So, passing in (25) to the limit with 

8 - 0  and T •* 0, we obtain

C = 0.
♦

In view of the above - and formula (14), after some transforma 

tions equation (25) will take the form

(Í26) log (1 - X 1 + T

where

B

Note further that from (17), (19) and (21) we have

By Remark 1, we may expand the function T m T(a) in apow*



er series in some neighbourhood of the point s ** 1. The coeffi-

cients of this series will be obtained from relation (27) by 

succesive differentiation of both sides with respect to s. Ta-

king this into account, let us expand each particular function 

by equation (26) in a'power series, also in a neighbourhood of 

the-point s - 1. By comparing the terms not containing the 

, variable s, we get

2 ♦ (p + r̂) z2 p + 4" + 2z 1 — p 
(28) log  *-----ft- -.ffi + -----®---. -j log ----  -

4 -  e>zo 2 + </? ♦ p zo  1 + *>

2(a_z + 2)i o____ _

From (14), in view of (6), we have

(29) a
1. 2

2 + + e )zo
2 -2( 1 - a) • zq

*n virtue of (29), after some transformations equation (28) will 

take the form

1 , 2

[<* + j> 5o + 2zo] log T T g

4z, 2zo + + J )ZQ.
1 - a

Prom (30), by isolating the real part and the imaginary one, 

We obtain a system of equations

(31) <t - 2) Ĵ arc tg ~ -
sin 2V im ( _1_- a)
2 cos 2^ M  _ a ,2 ^

sin ip +- (t + 2)r -



■ Log UL + 2 cos 2V> - 21 Bln 2VI 
t + 2

(32) (t - 2) ĵ Log
It + 2 cos 2* - 21 »In 2VI 

t - 2

+ r e L L ^ a i  glnV + 
11 - al _

(t + 2) ĵ arc tg
2 sin 2V , im( 1 - a) 

t + 2 cos 2V 11 - al*
cosV • 0

where

To sum up, we have proved
/ ’

Lemma l. For each extremal function satisfying the equation

of form (a),

where V and t are roots of system of equation (31), (32).

Of course, there prises a question* for what a's does sy-

stem of equations (31), (32) possess a solution and is this so-

lution the only one?

In order to answer the question, we shall first prove

Lemma 2. The jacobian of system (31), (32), calculated with 

respect to the unknown quantities V and t, is different from 

zero at each point (ro a, im a, H1, t) satisfying this system. 

P r o o f .  The jacobian of system (31), (32) is expressed

by the formula .

(33) h(f) * t + cos zyf,

(34) J = (t - 2 cos 2J¥) ■ arc tg ------------+ ----1--- 5-
t + 2 cos 2Vf |1 - al4

Log



Log 'It t 2 c o b 2V> - 2i sin 2V | + re(1 - a)

t - 2 11 - al

It is easy to check that, for V = 0 or Vf * ?, Lemma 2 is

true. Assume in the further part of the proof that V e (0, “ ). 

Transforming equations (31) and' (32) in a suitable way and next,

dividing them, after simple calculations we get

(35)

where

sin 2V + im(1 - a) 

2 cos 2V 11 - al2
+ S,|arc tg

- —  [(t - 2) S, - (t + 2) S. + 4], 
t - 4 1 1

s m Log  It + 2 cos 2V - 21 sin 2V> I + re(1 - a)

1 t + 2 11 - oil 2

S - Log I t 2 cos 2H> - 2i sin 2V I + re(1 - a)

t - 2 11 - al'

Let us now consider any fixed a such that re(1 - a) < 0. 

Suppose that at some point satisfying system (31), (32), such 

that red - a) <0 , jacobian (34) is equal to zero. It can be 

easily verified that this is possible only when

(36) s 1 < 0 and s 2 > 0 .

in virtue of (35), jacobian (34) is written down in the form

(37) j = fit ~ 2 cos ¿y_l j-(t _ 2)S2 - (t + 2) S, + 1].j , 11^-2-cg&Jgü [(t . 2)s.
tT - 4

It follows from (36) and (37) that J > 0, which contradicts 

our supposition. In a similar way we show that the jacobian is 

different from zero for all points satisfying system (31), (32), 

such that re(1 - a) > 0 .  Lemma 2 has thus been proved.

Remark 2. The jacobian of system (31), (32), calculated with



respect to the unknown quantities V and g , is different from 

zero at each point (re ct, im a, V , g ) satisfying this sy-

stem.

Indeed, this follows at once from lemma 2 and the fact that

t - -P + —• and thus, t' ■ 1 -  - 4  < O for p e (O, 1).
* fi2 

In the investigations carried out so far we have limited 

ourselves to considering a from one of the half-planes im a

< O or im a > 0. Now, let a be any point of the complex pla-

ne C; then the parameter « < -®-, &>. It is easy to verify

that, for the range of variability of V thus extended, system

(31), (32) remains unchanged, and only

(32), we obta-

(32) is satis- 

From (33) we

J e n k i n s

Denote

(38) B = { (V, £) : - f  < tp < and 0 < £ < 1} .

System of equations (31), (32) is equivalent to (30), and hence

follows

Remark 4. To each pair ( V , £) e B there corresponds exactly 

one number a such that system of equations (31), (32) is sat-

isfied. This number is defined by the formula

£ < arc ta 2 Sin 2V &
2 9 t + 2 cos 2V 2

Thereby, Lemma 2 and Remark 2 remain true.

Note that by putting V = - in system (31), 

in t = 4 re a - 2, im a = 0. Hence follows

Remark 3. For each fixed a > 1, system (31), 

fied by the pairs 3"* 4 a - 2) , (®-, 4 a - 2).

then have

2
re (a3 - aa2 ) = 4a - 3,

which is in accordance with the result obtained by 

[3]. The extremal function is the Koebe function.



+
2 + (g + gpe

In our further considerations we shall determine the set of 

values of mapping (39) for (V, g) e B and prove that it is a 

homeomorphic mapping. Consequently, in virtue of Remark 4, we 

shall tell for what a'* system (31), (32) possesses a solution 

and show that it is the only solution.

We shall first demonstrate that mapping (39) is locally ho-

meomorphic in the set B. To that end, it is enough to prove

tennid 3. The jacobian of mapping (39) is different from zero 
at each point of the set B.

P r o o f .  Let us introduce the following notations

where g ■ fc(V,£) stands for the real part, while = ^ ( ’’♦’/g)

- the imaginary part of the right-hand side of equation (39). 

Denote by u> and © the left-hand sides of equations (31) and

(32), respectively. So, everywhere on the set B we shall obta-
in

Differentiating the above equations with respect to V and £>, 

and next, multiplying them and subtracting in a suitable way, we 

shall finally obtain the equality

Since the^irst addend is, by Reroar* 2, different from zero in 

the set B, therefore

a-6+ii*, 6 * I ( V, £) , rl =rl(N>,g),

<*>(§, T,, V, g) * o, 

© <5, n.' ’*’» £> “ °-

^  -Sg’l V*  0 for (V.*) e B,

which gives the verity of Lemma 3.



We shall now construct some simply connected set G and then 

prove that it is identical with the set of values of mapping

(39) for (V, g) e B. ,

To this effect, note first that whten , V - ̂  or V — -?f with 

a fixed £ € (0,1), from (39) we get

(40) a - {(£ + ~ + 2).

Since (O.e (0,1), therefore from (40) it can be seen that a 

tends to a real number greater than one.

Next, note that by passing in (39) to the limit with V ■* -

- ?[■ and g -» 1 at the same time, we shall get that a •* 1.

Let now £ -» 1 with a fixed V a (- ^) . From (39) we then 

obtain that a tends to a*, where a* is defined by the form-

ulae

(41)

re<1 " QP  - 1 - Log cos V , 
II - a V

-lm(1 a*- » tg V - V .
11 - a*l2

Assume now that e < 0 , 2"). From (41) we have

(42) [(1 - x) 2 . .2

1 -------L i  x 2 1 ------— ?
e (1 ' x) + y arc cos e <1 ' *> + * ♦ •

1 - ..L -  x

+ ye <1 - x)2 + y2 . o.

where x = re a #, y « iti a*. 

It is easy tc prove



Remark 5. Equation (42) defines exactly one continuous func-

tion y - y (x) for x « < 0,1). The graph of the function con* 

' fkina the point (0,0) and, besides this point, it is Contained 

In the half-plane y » im a * <  0 and in the di3c

' -  5 '  <  b

with that lim y(x) - 0. 
x - 1 ~

Note that, for V» « (- 0 >, system of equations (41) is

®*tiafied by a*'s such that x e < 0,1) and y “ -y(x), where 

the function y(x) is defined by equation (42).

Passing in (39) to the limit with £ - 0 when V e (- ^ , ^) 

i* fixed, we get that a - oo .

We shall now proceed to constructing the set G announced 

before. For the purpose, denote by E a set consisting of the 

“egment < 0,1 > of the axis Ox and closed segments, parallel 

to the axis Oy, such that their terminal points are defined by 

the conditions y * -y(x), 0 < x < 1. The set ' E thus construct-

ed is a connected set [5].

Let ua put

(43) G - C - (E U {(x,y) s x > 1 and y ■* 0} ).

® ia an open set. It can be easily verified that any two points 

of the set G can be linked together by a polygonal line con-

tained in thia set. Hence it appears that G is connected. Sin- 

°® lta complement to the plane C is connected too, therefore G 

ls a simply connected set.

We shall now prove

Lemma 4. The set of values of mapping (39), for ( V, g ) e B, 

ia identical with the set G.
P r o o f .  It easily follows from the construction cf the

6et G and from Lemma 3 that

a(B) c G and 5 g c 5a(B),

where 5 denotes th«? boundary of the respective set, while q (B) 

the image of the set B unde^ mapping (39).



The sets a(B) and G are open ones, and G is simply conn-

ected, so, in order to demonstrate that G ■ <*(B), it suffices 

to prove the inclusion 6a(B) c ¿¡G.

To this end, suppose that 6a(B) -fiG + 0» i.e. 5a(B) - a(SB) ? 

/ 0. Consequently, there exists some aQ such that aQ « to(B) and 

aQ ** a (5b) . Since ao«5a(B), there exist a sequence an« a(B) such 

that an - aQ and a sequence (Vn# £„) • B such that an « “ {’•n* •

p ) convergent to some point (V,o). It may be the case that 
k

(V,ç) e SB or (v‘,£) « B. If (V,£) e 6 B, then aQ c a($B), 

which is a contradiction. On the other hand, if (M*,ç) e B, then 

from Lemma 3 it follows that there exists a neighbourhood 0 of 

the point (V,£>) such that a|Q is a homeomorphism. Hence we 

have that a(0) is an open set contained in a(B). And so, the 

point a(Y,g) * aQ would belong to a(B), together with its 

certain neighbourhood, thus it would not be a boundary point of 

this set, which yields a contradiction. Consequently* we have 

shown that ¿>a.(B) c SG, and thereby, that a(B) * G. Th® proof 

of Lemma 4 has thus been concluded.

Finally, we shall demonstrate that mapping (39) is a homeo-

morphism on the set. B.

For the purpose, we shall first prove

.
Lemma 5. Let a(V,[>) stand for the mapping defined by for-

mula (39). For each point (N>0 , £Q) e B and each curve T with 

parametric description

where x » re a, y = im a, issuing from the point aQ * a( V0, 

¿¡>o) and running in G, there exists exactly one curve L with 

parametric description

issuing from the point (V , p ), running in B and such thato o
along it we always have

x - x(s), 

y - y(s),

4> » V(s) ,
8, < s 4 s2,



a(H> is) i gis)) * a(s) ,

where a(s) ■ x(s) + iy(s).
P r o o f .  Note first that .from the local holomorphy of 

mapping (39) (see Lemma 3) it follows that, if d - (5c, y) is 

some point of the cur^e T, corrtosponding to a parameter s (i.e. 

*«*($), £»(£)), whereas (V,£) - [V(i),g(8>]' belonging to 

B is a point such that a(V(s), £(£>)) • a, then in seme neigh-

bourhood of the parameter s there is exactly one curve L with 

description

running in B,
V « V(s),

G “ fi<8) .

along which we always have a(V(s), £ (s)) * a(s), under the con-

dition $(s) -V(â), g(s) -g(â).

It is easy to show that, if we are given two curves 

with descriptions, respectively,

and

and

-$(s),

£ - ? (■> »

for

always 

then the

< A. < p < s2, running in B, along which we

have a(H>(s), ¿(s)) » a(s) and a($(s), ¿’(s)) = a(s) , 

coincidence of the initial points of these curves involves their 

coincidence in the whole run.

From the considerations carried out it follows that there 

exist a greatest such interval i * < 8^, s>) and in it a respec-

tive curve H with description

V « V(s), 

fi ■ 2 <8)*

tunning in B and such that a (Vis), ¿5(s)) =a(s) for s e I. 

^king use of the continuity and local holomorphy of mapping (39), 

in a simple way one can extend the curve L to the curve L ie- 

^uired in the lemma, which ends the proof.
N

CorolJary I. Mapping (39) is a homeomorphism for (V,#) e B. 

P r o o f .  Indeed, from Lemmas 3 and 5 it follows^ hat 

"Upping (39) is a convering [4]. Since the set G of its values



for (V » £) € B is a simply connected set, therefore the mapping

is a homeomorphic one [4], ,

To sum up, we have proved

Letma 6. If, for a e G, an extremal function satisfies the 

differential-functional equation of form (a), then the maximum 

of the functional considered is defined by formula (33), where

V and t «* p + 4- are the only solutions to system of equations 
*• £

(31), (32) (t > 2 and N* e Moreover, for a 4 G, the-

re is no extremal function satisfying the equation of form (a).

4. EQUATION OF FORM (b)

We shall now examine the case when equation (7) is of form

(b), that is,

(44)
Zf'(2) 

f (Z)

2 l + u f j £ j  .  (Z ~..2.Q)A (_2 l i o )! < 2 e K#
f2(z) z

where ( zQ * e*1**, V e (O, j >, zQ £ zq , u ^ 0.

By comparing the right-hand sides of equations (44) and (7), we

obtain the relations

(45) u = -4 cos ,

2
(46) Bq 3 1 + 2 cos V .

Transforming equation (44) in a suitable manner and then inte-

grating its both sides, we get i

,, - '/*T~ + uf(z"7 u , uf (z) 1 _(4 7# ----- y log ---------- ------ -....T  z C <
 ̂ 1 Z (1 + y/l + uf (a))

z e K,

where a suitable branch of logarithm has been chosen, and C 

stands for a constant.

Expanding the left-hand side of equation (47) in a power



aeries with centre at the point z - 0 and comparing the coeffi-

cients at the same powers of z, we obtain the relations

(48) C - a2 - | (1 + log ~),

(49) a3 - a22 - ~ u2 + y  via2 « 1.

where log is determined by the choice of the branch of loga-

rithm in (47). Relation (49) is equivalent to (46).
i. X

It is Known that there exists a point z ■ e , x € R, such

that f(eix) - - Taking this into account in equation (47), 

we get

(50) re C « 0.

Since u 0, therefore, dividing both sides of (48) by u and 

taking account of (6) and (50), we obtain

a-re 1 - a 

,a2! “ 1"1 - a|e
'

By making another use of notation (6) and employing relation (45), 

It can be easily computed that

arg a2 * Arg ^ - + kJT, k * 0, -1, ...

Since In the case under consideration u ^ 0, therefore V e. (0, 

2 )̂. Hence and from (45) it follows that u is a negative real 

dumber, which, in consequence, gives

-re Arg r—— -ic«i * _ l - a l et
a2 = II -"¿U 6 

taking account of (51) in (6), we have

a-re
a 1 -  au = - 4e ,

which, along with (45), yields the equation



-re 4 —
(52) e 1-ct - c ob V .

It can be easily checked that equation (52) possesses one 

root V € (0, y) whenever I a - < y. What Is more, for la - 

“ "2 * * T' etJuatl°n (52) possesses no solutions in the interval

(o, f).
Taking account of (52) in (46) and of notation (5), we even-

tually obtain

-re-^-
(53) a3 - a a22 > 1 + 2e 1_a .

We have thus proved

Lemma 7. If, for a's satisfying the condition la-^l < j«.

there exists an extremal function which satisfies the equation 

of form (b), then the maximum of the functional considered is 

expressed by formula (53). For a's such that |a - -jl > the-

re is no extremal function satisfying this equation.
i

5. EQUATION OP FORM (c)

We shall investigate the case when equation (7) is of form

(c), that is,

(54)
zf'(z) 

f (z)

I + uf(z) (z - z )

f2(z) z2

where z(. = , V e < o, y > ,  u ? 0. From the comparison of

the right-hand sides of equations (7) and (54)-and from the fact

that B > 0 it follows thato

(55) . . zQ - -I,

and in consequence,
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(56) u « -4, Bq “ 3.

On account of (55) and (56) , equation (54) is equivalent

to

zf'(z) S i  - 4f(z)’ (i - z)2 _ _ „ r? _ ,
“ h i r  — U i l l -  ‘  — z— ' z e K '  ^ i - i *

After this last equality has been Integrated, we obtain

,57, . £ L 3 2 3  . 2 1o, -------- d i U i ---- T .

C(Z1 *(1 + � 1 - 4*(z) )

- - 1  + z ♦ C,

where a suitable branch of logarithm has been chosen, and C 

denotes a constant.

Expanding each particular addend of equation (57) in a power 

series with centre at the point z ■ 0 and comparing the terms 

not containing the variable z, we get

(58) C - 2 + a2 - 2 log(-1),

where log(-1) is determined by the choice of the branch of lo-

garithm in (57).

On the other hand, also from equation (57) we easily obtain

that

(59) re C = 0.

From (58) and (59) we have

(60) re a2 = -2.

Since in the class S the estimate ja2l < 2 is well known [6], 

from (60) it follows that

(61) a2 = -2.

In view of notation (6), from (56) and (61) we have

a *= 0.

Consequently, the following is true.

\



Lemma B. If, for a * 0, an extremal function satisfies the 

equation of form (c), then H(f) » 3. For a f 0, extremal

functions do not satisfy this equation.

6. EQUATION OF FORM (d)

We shall now examine the last case, namely, when equation

(7) is of form (d), that is.

(62)
zf'(z) 

f (z)

1

f2 (z)

(z - Z )2 (z - 2 ) 2
------ 2--- 2---- 2 - ,  z « K,

where

z - eo
iW zo * tQ, v  (o, 5  >.

Putting u - 0 in equation (7) and comparing the right-hand 

side of this equation with that of (62), we get that V ■ In 

consequence of this, equation (62) will take the form

[z f  (z)~| 2 T „ (z2 + 1):
[ f(*)J fJ(i) z* ~

whence, since f(0 ) * 0 , we have

(63) z f  (z) . 1 „ 2 + 1 
f ( 2 ) f ( 2 ) 2 2

Integrating equation (63), we obtain

(64) f ( 2 ) -
1 - Cz - z

Z « K,

where C is a constant.

It is easy to check that function (64) belongs to the class

S if and only if

(65) re C * O, -2 < im C < 2.



On the other hand, from (64) it follows that *

v 2
(.66) C » -a2, a3 - a2 * 1.

Since in the case under consideration u * O, therefore a « 1 

Cta- a2 ■ O. In view of this fact and from relations (64), (65) 

and (6 6) follows >

leans 9. If the function f(z) is an extremal function and 

satisfies the equation of form (d), then it is of form (64) 

under conditions (65), and

(67) H(f) - 1.

If a « 1, equality (67) holds for each function of form (64), 

whereas if o / 1, then only for the function

f(z) « — — 5 .
1 - z

7. THE FUNDAMENTAL THEOREM
I

i
So far, we have considered all possible forms of equation

(7) for the extremal functions for which the functional H(f) 

attains its upper bound. At present, we shall formulate and 

Prove a theorem giving a final piece of information on the ma-

ximum of the functional |a3 - a a22|.

We introduce the following notations:

E, * t(x,y) t 0 < x < 1 and y(x) < y < -y(x)},

E2 - f(x,y) x x > 1 and y * 0) ,

E 3 - ((x,y) t (x - | ) 2 + y2 > |) - (E2 a {(0 ,0 ), (1,0 )}),

where x * re a, y *= min a, while the function y(x) is defined 

by equation (42).

Theorem. For any function f of the family S,\ the estimate



(68) |a3 - a «2 I

-re 2a
1 + 2e

1

3

4a - 3 

t + cos 2T

for

for

for

for

for

a s E1, 

a ■ 1, 

a *= 0, 

a « E2 '

a « E,

are the only roots of system of equa- 

and V  « (- ?, ?)). Estimate (68) is

is true, where V and t

tions (31) , (32) (t > 2 

sharp.

P r o o f .  Let us first notice that, together with

function f(z), to the class S also belongs the function e

the
-i.e

f(e z), 8 € R . In consequence, as can be* easily

2 .
the maximum of thq functional la3 - aa2 I coincides in 

class of functions with that of the functional

verified, 

this

2.'
H(f) ■ re(a3 -

aa2"). So it is sufficient to confine oneself to investigat-

ing the latter.

Note that both

-re
2g

1 - a

‘ 1
for

for a e E 

- 3 > 1 

bound of the 

variable a,

. 1 + 2e --- > 1

and t + eos 2V > 1 for a e E3 as well as 4a -

a e E2- Hence, and from the fact that the upper

functional H(f) is a continuous function of the 

it is easy to prove that the estimate

H (f) < 1, f e S,

resulting from Lemma 9, holds true only for a *> 1. The extre-

mal functions in this case are functions of form (64) which sa-

tisfy equation (d).

Let us further notice that the set E3 is disjoint from the 

set E2 and from the disc la - “ I < Hence and from remark 5

as well, andit follows that E3 is disjoint from the set E1, 
does not contain the points a = 0 and a *» 1. Besides, 

where the set G is defined by formula (43). From these conside-

rations and from lemmag 6, 7, 8 it follows that, for a e E,

the estimate '

E3 c g,

*3'



(69) H(f) < t + cos 2M>, f « S,

holds true, where t and V are the only roots of system of

equations (31), (32), and this estimate is sharp.

In the same manner, let us note that, since the sets E 1 and

G (see (43)) are disjoint and E 1 C (a : la - < -j), there-

fore, in virtue of the considerations carried out in the suc-

cessive sections of the paper, tor a e E1, we have

(70) H (f) < 1 + 2e 1 " a , f e s ,

and the estimate is sharp. It is worth noting that extimate (70) 

is compatible with that obtained by G o l u z i n  [1] for

a e (0,1) C Er

For a € E2, by Remark 3, we obtain the well-known estimate

H(f) < 4a - 3.

The extremal function is the Koebe function

f (z) * --- ----= .
(1 + iz)

From the considerations carried out and from Lemma 8 also foll-

ows the well-known estimate H(f) < 3 for a = 0. The extremal 

function is also the Koebe function

f (z) = -----— ~.
(1 + z)

The theorem has thus been proved.

It is worth pointing out that the estimate of the functio-

nal under consideration for a < 0 , [3], is a special case of 

estimate (69). For a < 0, the solution to system of equations

(31), (32) is the pair (V,t) = (0, 2 - 4a).

The theorem we have just proved gives no information on the 

Maximum of the functional for a's belonging to the intersec-

tion of the sets G((see (43)) and (a : I a — ^I < —•} . From 

the considetations carried out in sections 3 and 4 it follows 

that, for these a's, either estimate (69) or (70) can hold 

true.



To finish with, it is still worth stating that the Koebe 

function can satisfy differential-functional equation (7) only 

when a is real. And so, it is an. extremal function only for 

a < 0 and a > 1.
This paper, in the form of a communication, was presented 

for the first time at the International Conference on Analytic Func-

tions at Kozubnik in Apri} 1979 [7].
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2
OSZACOWANIE FUNKCJONAŁU la3 - a ajl 

W KLASIE S FUNKCJI HOLOMORFICZNYCH I JEDNOKROTNYCH DLA ZESPOLONYCH LICZB a

2 •V niniejszej pracy bat!rmy maksimum funkcjonału laj - Q a2l w znanej klasie 

S funkcji1 holomorficznych i jednolistnych w kole jednostkowym, gdzie a jest 

dowolnym parametrem zespolonym. W przeprowadzonych badaniach korzystaliśmy z 

metody wariacyjnej, a w szczególności z równania różnicikowo-funkcyjnego A. C. 

Schaeffera i D. C. Spencera. W konsekwencji wyróżniono w płaszczyźnie parame-

tru a, w sposób efektywny, sześć rozłącznych zbiorów i podano w nich odpo-



viednio sześć dokładnych wartości ekstremalnych funkcjonału. Wśród n ■ h, ja-

ko szczególne przypadki, wynik J. Jenkinsa. Wartości ekstremalne wyrażają siy 

przez parametr a prostymi wzorami analitycznymi; jedynie w jednvm ze zbio-

rów występuje nie rozstrzygnięta alternatywa, czyli maksimum dwóch wyrażeń 

analitycznych.


