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ON SOME CONTROL PROBLEM

In the paper there has been considered an optimal control pro-

blem in a arbitrary convex class of controls. The integral maximum 

principle for optimal controls as well as a local necessary condi-

tion for monotone controls have been proved.

* INTRODUCTION

Let us consider the following optimization problem:

1

I(x,u) ■ J* f°(x,u,t)dt •* mln, x * f(x,u,t), x(o) = x
o'

u e U. (The exact assumptions on the functions f°,f,x,u and the 

set V. are given at the beginning of § 1).

In the case when 11 is the class of Pontryagin admissible 

controls* the extremal problem formulated above is a classical 

problem of optimal control and was investigated in many papers 

and monographs (cf. e.g. [1-5]).

In the present paper we assume that U  la an arbitrary con-

vex class of measurable controls. U  may be, for instance a 

family of monotone controls with values belonging to a given set 

M, a family of controls with bounded variation, and the like.

In the paper we have proved the integral maximum principle 

for optimal controls in the class U  as well as some local con-

dition in the case when 11 is the family of monotone controls.



The proof is based on the Euler equation which was derived in

paper [6 ].

AN OPTIMAL CONTROL PROBLEM

Let f° s Rn * Rm * R - R, f s Rn « R™ * R - Rn , f°, f°, fx ,

fu be functions continuous with respect to (x,u) and measur-

able with to t. Besides, let f°, f°, fx# fu be bounded in

any bounded set of the space Rn * Rm * R.

Let U  be an arbitrary convex class of measurable controls 

u : R - Rm.
Consider an optimal control problem of the form

1

(1) I(x,u) * J  f°(x(t), u(t),t)dt •* min

under the conditions

(2) x(t) * f(x(t), u(t),t),

(3) x(0) - xQ ,

(4) u( •) e U,

where xQ is a fixed point of the space Rn , while x(») is an

absolutely continuous function. /- 

We are going to prove

Theorem l (integral maximum principle). If (x°,u°) is a 

solution to problem (1-4), then there exist some il0 O' and 

absolutely continuous function V , such that

1

(5) J  [_Ao fu(x°,u°,t) + f*(x°,u°,t) V(t)]uo (t)dt

1

* max f [-X f0 (x°,u°,t) + f*(x°,u°,t) V (t)]u(t)dt,
u(• )e*U £



$<t) -f£(x°(t),u°(t),t) v  (t) + \of°(x°<t),u°(t),t) a.e,

V d )  - 0,

L  i' O or. V  (t) 0 for t 6 [0,1].«* O
- 4-

P r o o f .  Let us adopt X - Cn (0,1) * L™(0,1), where

1) is a space of functions continuous on the interval [0,1

norm IIxII ■ max lx(t)l, while L™(0,1) is a space of 
te  [0 ,1]

tially bounded functions with norm vrai sup lu(t)I.
Denote by Z^, Z2 the sets

r  t

Z1 - {(x,u) c  X, x(t) - xQ + J f (x(t) ,u(t) ,t)dt} ,

0

Z, - {(x,u) e X, u e 11} ,
i >-

So, problem (1-4) may be formulated in the form

I (x ,u) - min, (x,u) e Z1 n

The cone of directions of decrease of the functional I 

the form

1

Co " e x' J [f°(x°,u°,t)x + f°(x°,u°,t)u]dt < 0),
o

Whereas the dual cone

c *o - ifo e x*' =

1

" " Ao J [ f x (x°'u°'t)5f + f°(x°,u°,t)u]dt, XQ > 0)
0

<cf. [2]).

Assume momentarily that

(6) Cc f 0.

Cn (0, 

] with 

essen-

i s  o f



The cone tangent to the set 2̂  at (x°,u°) is defined by the
formula

C 1 ■ {(*,0) e X, z « fx (x°,u°,t)x + fu (x°,u°,t)u, x(0) - O).

(C.j is a space tangent to Z1 at (x°,u°)).

Denote by C2 cone tangent to the set Z2 at the point (x°# 

u°). Since Z2 - X * tl, therefore C2 Is of the form

(7) C2 - X « S2,

where C2 c L™ is a cone tangent to the set U  at the point 
u°. We shall further show that the cones C1 and C2 satisfy 
assumption (3) of theorem 4.1 (cf [6]) i.e. that a  Cj is 
contained in a cone tangent to a  Z2* Denote by P an operat-
or P s Cn » Lm • Cn defined by the formula .

1

P(x,u) » x (t) - xQ - J f(x(t),u(t),t)dt.

0

The set Z1 can be represented in the form

Z1 ■ {(x,u) e X, P(x,u) - 0}.

It is easily checked that, in same neighbourhood VQ of the point 

(x°,u°), the operator^ P satisfies the assumptions of the im-

plicit function theorem (see f2] example 9.3 and [3]). Conse-

quently, the set Z y can be represented in the neighbourhood Vc

in the form

(8) Z1 * {(x,u) ex, x ■ cp(u)},

where cp : L̂ , -» C11 is an operator of class c\. satisfying the 

condition P(cp(u),u) - 0 for u such that (<p(u) ,u) 6 V . From 

this we infer that he cone C 1 can be represented in the form

(9) C, = { <x,u) a X, x = (pQ (u°)u).

Let (x,u) be any element of the Set C. A C_. So, there
2exists an operator v : R - U  such that



•*— —  - O as £ -* 0+ and
£

(10) (x°,u°) + £(5?,S) + (v*(£),v*(£)) e Z2

2
for a sufficiently small £ and with any v^(£).

It follows from (8) that, with a sufficiently small £ , w*-

have

(<p(u° + £5 + v2(£)), u° + £3 + v*(£)) e zy

Since <p is a differentiable operator, therefore

<p(u° +• £u + v 2(£)) * cp(u°) + £cpu (u°)u + v^(E)

1 2 + 
for some vx such that 1/£ v (£) - 0 as £ - 0 .

Taking account of (8) and (9), we get
t

(11) (x°,u°) + £ (x,u) + (v’(£), v*(£)) e zr

2 1
If in formula (10) we take * vx^E*' fchen it: follows from

(10) and (11) that (x,u) is a vector tangent to the set n Ẑ .‘ 

Consequently, C 1 r\ C2 is contained in the cone tangent to the 

set Zi n Z2.

From theorem 3.3 (cf. [6]) (7) and (9) it follows that the 

cones C* and C2 are of the same sense. Making use of theorem 

*•1 ([6]) we obtain the Euler equation of the form

fQ (x,S) + f,(x,ü) + f2 (x,ü) = 0

for any (x,u) 6 X, where fi e c*, i = 0,1,2 (see [6]).
Further, proceeding analogously as in ([2], § 12), we get 

the proposition of Theorem 1. In the singular case, i.e. when 

condition (6) is not satisfied, we also obtain the proposition.

It 11 is, for example, the family of all measurable func-

tions with values belonging to a convex set M c r'11, then from 

Theorem 1 one can obtain a generalization of the local maximum 

Principle (cf. [2] § 12).



In Theorem l we do not assume that the set of controls pos-

sesses interior points. This enables us to examine various non- 

-standard classes of controls and to obtain fot them necessary 

conditions for optimality. For instance, let us consider a set 

of controls u = (u1, ..., um) such that

(12) u*(t) e [OjM*] for i - 1,2 , ..., mj t « [0 ,1]; u(o) » 0 ,

and u* are non-decreasing functions on the interval [0 ,1],
where M1 > 0 are fixed for 1 - 1,2, ..., m. This set will be

denoted by R. Since u* are non-decreasing, therefore, without

loss of generality, we may assume that they are continuous on

the left. We shall prove

Theorem 2. If u° is an optimal control in problem (1-4), 

where V. * R, then there exist a constant \ ¡> 0 and an ' abso-

lutely continuous function V, such that conditions (5) are sa*- 

tisfied. Moreover, if a component a^, 1 <; k £ m, of a switching

function

a(t) - -XQ f°(x°(t),u°(t),t) + f*(x°(t),u°(*),t) V(t)

is of the constant sign on the intervals (t£, t£+1), i ■ 0 ,1,
o 1 ’ rk

..., rk~1, k = 1,2, ..., m, where 0 ■ t^ < tk < ... < t^ - 1,

then the component u° of the optimal control u° is constant on

each interval (t£, t^+1), that is, u° is & step function and

the number of its jumps does not exceed r^ + 1.

P r o o f .  The first part of the proposition follows direc-

tly from Theorem l. Let L = (t̂ , t^+^) be a fixed interval. At

first, consider the case when the function a^ is negative on

this interval. It can be easily seen that a function defi-

ned by the formula

r ujjitj - 0 ) for t e (tjj, t£+1] ,

2k (t) - |
for t < it*. t*ł1],



satisfies the conditions uk (0) * 0, \(t) e [0,Mk] and 3k is 

a non-decreasing function. So the control

u » (u°, ..., u°_r  iik , u°+1, ..., u°)

is an admissible control, i.e. tt e R (see (12)). In view of 

condition (5), we have

1 1 

J a(t)Q(t)dt <; J  a(t)u°(t)dt,

O 0

where

a(t) - -\o f°(x°(t),u°(t) ,t) + f*(x°(t),u°(t) ,t)N»(t).

Hence

<13> j ak (t)uk (tk ' 0)dt 5 J ak (t)u°(t)dt.
L L ' }

The function ak is negative on the interval L, whereas u£* -

non-decreasing. Consequently,
k

(14) ak (t)u° (tj - 0) > ak (t) u°(t) for t e (tj, t£+1 >.

Hence it appears that u°(t) * u£(t* - 0) on the entire interval 

L. Indeed, if, at some point T e L, uk (T) > u£(t_k - 0), then 

also uk (t ) > u°(tk - 0) on the entire interval (T, tk + 1 ). In 

view of inequality (14), we get

f  3k (t) uk (ti * > J  ak (t)u°(t)dt.

The last inequality contradicts (13).

In the case when is positive on L we adopt



k<t)

uk (tk+1 + 0) for e <tk ,tk+13

u°(t) for t i (tj,tł+1].‘k'w  r ' k' k 

An analogous reasoning leads to the conclusion that

uk (t) “ uk {tk+1 + 0) for e L*

Further, let us consider a linear system of the form

1

1 (x,u) ■ J (ax + bu)dt,

0

(.15) x = Ax + Bu, x(0) - XQ

u(-) e R,

where A,B,a,b are constant matrices of dimensions n * n, n » 

x m, 1 x n, 1 » m, respectively. It is known that, if system 

(15) is regularly controllable, (see [1]) and the eigenvalues 

of A are real than the switching function (t) ■ (-B* V (t) + 

+ X b). alternates its sign at most n times. Consequently, each
O K

component uk of the optimal control in problem (15) is a step 

function and possesses'at most n + 1 jumps.

PHYSICAL INTERPRETATION

ihe optimal control problem in the class of monotone controls, 

investigated above, can be interpretated physically in a natural 

way. Namely, let us consider an object Q supplied with m en-

- ;s serving to drive and direct the object. Each engine pos- 

sssses M1 > 0  of fuel. Assume that the motion of the object is

- :ru.;d by the equation x = f(x,u,t), x(0 ) * x , t e [0 ,1]
i

’hi; w‘? control the quantity of the fuel used up, i.e. u (t) 

¿s e q entity of fuel used up by the i-th engine in the time



interval [0,t], i * 1, ..., m. We want to determine a control 

u°, so that the cost functional

f o 1I(x,u) - J f°(x,u,t)dt

0

should attain a minimal value. From Theorem 2 it follows that 

u° satisfies conditions (5). Besides, if the sign of the 

switching function is a 'piecewise constant function, then the 

optimal control of fuel consists in its explosive use. It the 

motion of the object is described by the regularly controll-

able linear system (15) and the matrix A possesses only real 

eigenvalues, then the number of "explosions" under the optimal 

control does not exceed n+1.
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Stanisław Walczak

O PEWNYM PROBLEMIE STEROWANIA »

W pracy rozważane jest zadanie sterowania optymalnego w dowolnej wy-

pukłej klasie sterowarf dopuszczalnych. Udowodniona jest całkowa zasada ma-

ksimum oraz lokalny warunek konieczny optymalnolci dla sterowari monofonicz-

nych.


