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A METHOD OF SCALARIZATION OF BACOPOULOS AND SINGER 

IN VECTORIAL OPTIMIZATION

Thin work includes a generalization of Bacopoulos’s and Singer’s 

theorem refering to the scalarization of a vectorial programming for 

a pair of convex functions defined on a vector space.

It has been proved that Bacopoulos’s and Singer’s method of sca-

larization can also be applied in the case when the first function 

is linearly upper semi-continuous and the second is strictly quasi- 

-convex.

The relation between the local and global solutions of the pro-

blem of a vectorial programming and the behaviour of the set of mi-

nimal elements under their passing to the limit of the sequence of 

pairs of functions have also been studied.

Definition J. Let X be a vector apace over the real field, 

f be a realvalued function defined on X and G be a sub- 

a®t of x. The point gQ s G is called a minimal element of the 

Unction f on G (or a solution of a scalar program (G, f I GJ) 

if and only if f(g ) * inf f(g).
° g c G

The set of all such minimal elements we shall denote by S (r)

SG(f) ** {gQ e G s f(gQ> = inf f(g)).
ge G

Definition 3. Let X be a vector space over the real .tit-Id. 

f1# f be two real-valued functions def ined on X ar i Let
Q *

be a subset of X. We shall say that gQ e C is a »:.• >'■ ’■



element of the two functions on G (or a solution of
• 1 ' 2

a vectorial program (G, f.,IG, f2 1G)) if and only if there exists

no element g e G such that

(f^g), f2 (g>) < (f,(g0) * f2 ^ o n

(the inequality (f.,(g)r f2 (g)) < (9Q) » *2 9̂o ^  for a Pair of

numbers means that f,(g) < f,(gQ) and fj(g) < *2 ĝo*' at

least one of these inequalities being strict). The set of all 

minimal elements for the vectorial program is denoted by V^f,, 

f2). In this note cf most often * (but not only) will be a conf 

vex set. Similarly, it is possible to define a set Vgif,, ..., 

fk) for every finite system of functions f,, ..., f .̂

The examples given at the end of this note show that the 

method of Bacopoulos-Singer cannot be transfered in natural way 

on the case of three or greater number of functions (even con-

vex) .

Notice, that even if the functions f,, f2 and the set G 

are convex then the set VG (f,, f2) can be non-convex> In rea-

lity if

f, = max ( ip, V) ,

where

<f(x, y)

y for (x,y) c {(x,y) e R t y > O)

1 22 y for (x,y) e {(x,y) e R : y < 0)

and

V(x,y) * -x for (x,y) e R

-y.

then

V 2 (f1*f2> = ((x,y) s y > O A y > -x) u {(x,y) s y < O A y > -2x)• 
R



For convex functions f2 defined on the line is

convex.

Definition 3. Let X be a vector space over the real field. 

Let f be a realvalued function defined on X. We say that f 

Is convex if and only if

f(Xx + (1 - X)y) < X f (x) + <1 - X)f(y)

for every x,y e X and every X c [0,1].

We shall only consider the proper functions, i.e. finite- 

-valued functions.

Definition 4. Let X be a vector space over the real field. 

Let f be a real-valued function defined on X. The function f 

is called quasiconvex if and only for every x,y e X and for 

every X e [o,l] the following inequality is satisfied

f(Xx + (1 - X)y) < max (f(x), f (y)) .

The function f is called strictly quasiconvex if and only if 

It is quasiconvex and for every X e [0 ,1] equality of the 

above inequality holds only for f(x) = f(y) (see [6]).

Definition 5. Let X be a vector space over the real field. The

teal-valued function f s X -» R is called linearly upper semi-

~continuous at the point xQ e X if and only if for every x e X

and for every sequence t N>* 0 the following inequality is sati-
nn-oo

sfied

»
lim sup + * f ( x0 5 •
n - oo

The real-valued function f s X - R is called linearly upper semi- 

-continuous on X if and only if for every x e X it is linear-

ly upper semi-continuous.

The consideration of linear upper semi-continuous functions 

d°es not require a linear space X to have any topology.

°°urse, if x is the topological vector space then every con-

tinuous function on X is linearly upper semi-continuous {see ¡.7J.
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Definition 6. Let X be a vector space over the real field. 

Let A be a subset of X. We say that the point x e A belongs 

to the algebraic interior of A (x e Int alg A) if and only if, 

for every y e X - {x} there exists the number X e (0,1) such 

that

{ax + (1 -a ) (Xx + (1 - X)y) * a e [0,1]} c A.

By the definitions it is easy to prove the following theorem:

Theorem l. Let X be a vector space over the real field. Let 

f be a real-valued function defined on X. The function f : X ■*

- R is quasiconvex (strictly quasiconvex) if and only if for 

every x,y e X the function if (X) «* f(Ax + (1 - A,)y) is quasi-

convex (strictly quasiconvex) on [0 ,1].

Theorem 2. Let be a vector space over the real field. Th»

function f : X - R is linear upper semi-continuous if and only

if for every x,y e X the function <f>(A.) <= f( Xx + (1 - A.)y) is 

upper semi-continuous on [0 ,1]. *

Theorem 3. Let X be a vector space ovet the real .field. Let 

f,,f2 be real-valued functions on X and G be a subset of X. 

If SG (f1) SG (f2) jt 0. then VQ lt^,t2) = SG (f.,) n S G (f2),

Now we shall prove the theorem which is generalization of 

the theorem of B a c o p o u l o s  and S i n g e r  [2]. We 

need the following lemmas.

Lemma l. Let X be a vector space over the real field, f̂ » 

f2 be the functions defined on X, G be a subset of , X. Then if

c < inf f (g) or c > inf f.(g) we have
g e G g e SG (f2)

VQ (f1,f2) n {y e X : f,(y) = c) * 0.

P r o o f .  We consider c < inf f.(g) then (ys X : f.(y) “
gs G

= c) =0. Therefore

V'A f i , f2) n (ye X : f y (y) = c) =0.



We now consider such a can* when c ^ inf f.,(9>»
ge SG (f2>

If {y « X « f1(y) - c) • 0 then analogically we obtain the 

thesis of the theorem, If the set is nonempty then for every 

y • X such that f,(y) -  c > inf f«(g) there exists
1 g « s  G (*j>

y'« SQ (f2) such that

f (y) > f^y') and f2(y) > f2<y'> - inf G f2 (g)’

That means that y f V_(f1,f,X. Thus for every c > inf f, (g)
G 1 geS^ifj)

the set VG (f1ff2) o {y « X i f, (y) - c) is empty. Thus the leir- 

®a is proved.

Lemma 2. Let X be a vector space over the real field, fy,

*2 k® a real-valued functions defined on X, G be a subset of

*• Then if inf f.(g) - - 00 then
g « S G (f2)

V V V  " 0<

P r o o f .  Let y e G be any point. We shall show that 

y 4 VG (f1#f2). By the assumption there is y'e SG (f2> such that

Cy*) < f.(y). Simultaneously inf f2 (g) * f2 (y') < f2(y  ̂Then
1 g e G

(fi<y'), f2 iy')> < (f,(y)# f2(y>> and that means that vG <fi' 

*2> •

Theorem 4. Let X be a vector space over the reai field. Let 

f1* f 2 be a real-valued function defined on X. We assume that 

is linearly upper semi-continuous on X and f2 
^Uasiconvex on X. Let G be a convex subset of X. Then for 

®Very c s R ** (-°o, +°>o) satisfying the condition



we have

(2) VG (f1#f2) a  {ye X : f, (y) - c} - ®flA{x, Xl f 1 (y) < c) {t2] i

Consequently

(3) VG <f1 ' V  “

■ ^ . • * , ( , > . « ^ < 1 » «  ^  sG n ( y .  * , « , ( , > <  c) <f2>-

geG g s Sgffj)

P r o o f .  We suppose that c e (-«o, +oo) satisfies (1). We 

assume that there exists the element

* o '  SG a  (y .  x: £,(y) < c) <f2> N ? X , i 1(yl ’ °>‘

We shall show that

(4) go i sG (f2)•

Indeed, if gQ e SG (f2> then by the assumption that gQ e {y y f ,

: f,(y) < c) and by (1) we have

f (g) < c < inf f i (g) < W '
1 g 6 SG (f2) 1 1 °

which contradicts (4). Because we showed that (4) is satisfied 

it follows by (4) that there exists g e G such that

(5) f2 (g) < f2 (g0)..

Hence for every X, 0 < X < 1 by strict quasiconvexity of the 

function f2 we have

{6) f2 (XgQ + (1 - X )g) max (f2 (g0) f2 <g)> - f2 (go)‘

The function <plX) = £^ x<30 + (1 - A.)g) is an upper semi-contl" 

rvuous at the point X = 1. We have <p {1) * f-j (gQ) < c. Let



A,n / 1 thus lim sup <f>( Xn) < < 1 ) < c. Let E - £{c><p(1)) > 0. 
n — oo

Almost all numbers satisfy the following condition

<f>an) < V(1) + t  - <p(1) + |(C - (p{ 1 > ) - ¿ « p m  + C) < c.

If XQ - xn for sufficiently large n then

(piXQ ) - f , ( y o + <1 - V g) < c' ° * Xo  < 1*

Hence and by convexity of G we obtain

X090 + (1 - \0 )<1 s G n ( y s  X i £,(y) < c}.

The former and (6) contradict our assumption that

go e SG n {y « X : f1(y) < Cj

The assumption that the element ,
v y-

"o* SG 0 ( y . X I f j (y) < d ' V  v ty « X. - c ) exi.t.,

gives a contradiction. Therefore

We suppose now that there exists gQ such that

go e SG n {y e x i f1(y) < c){f2] N V W *

Then there exists g e G such that

(8) f, (g) < f1 (gQ ) - c

(the equality following by (7)) and

<9) f2 (g) < f2 {go)

with at least one of these inequalities being strict. Then b, 

(8) we have



g e G a  {y « X t f, (y) < c}

therefore f2 (g) > f 2(go> (because V SG o (y« Xl f|(y) < c ) ^ »  ■ 

and by (9) we have

(10) f2(g) - f2(gQ) • inf f2(g)
ge G a  (y e X i f, (y) < c) .

Therefor« the Inequality (8) must be strict» i.e. f,(g) < c. But 

by (10) and by (7) we have

g e SG a  {y e X : f,(y) < c) (f2) C {y c X s f, (y) - c) .

The assumption that there is

go * SG a  {y c X « f,(y) < c)(t2) X VG (f1,t2) 

gives the contradition thus

(11) SG a  {y c X : f1(y)<o}(f2) C V W  n Cy-X t (y) - c) .

The proof of the opposite inclusion.

Assume that there is g such that

go € VG (f1'f2> " {y 6 x ‘ fl<y> - c} NSg a  (y e X, f^y) < c) (f2} ‘

Then there exists g e G r\ {y s X s f,(y) < c) satisfying the ine-

quality

(12) f2(g) < f2(go>.

But by g e ly e Xi f^y) < c) and gQ c {y e X t f , (y) ■ c) we 

have ■

(1.3) fj(g) < c = f 1 <g0> •

and by (l£) we obtain that gQ ji. Vq(£1,f2). The obtained con-

tradition proves the opposite inclusion to (11), thus (2) is sa-

tisfied. ,,

Because for any c satisfying the condition



g« SG(f2)
f,(g>

we have

thus 

(14) .

SG n {y 4 X t ft(y) < c)(f2) C VG (f1'f2)

VG (f1'f2):)

u
inf f, (g) < c < inf f, (g)
96 G g « S G (f2)

SG n {y e X : f,(y) < c)(f2>

Ih order to prove the opposite inclusion let

g0 e V(J(f1,f2) n {y « X * f,(y) - c),

Hence by (2) we have

go * SG n {y e X * f^y) < c) if2>*

finally we shall show that c satisfies (1) which we have by 

£eiou I.

In the theorem of Bacopoulos and Singer the assumptions about 

f1*f2 are symmetrical. AS we shall show in the following exam-

ple in which f^»f2 are function defined on the real line, G - 

** ®»f-j Is upper semi-continuous (even continuous and convex) f2 

strictly quasiconvex, the exchange of the roles of f1*f2 in an 

inequality (1) and at the sets given in the both sides of the 

«quality (2) can cause the loss of that equality. Let the func-

tions f1 t R - R, f2 ; R - R be defined by

-x+1 for x < 1
zr .

0 for x > 1,

(
0 for X < 0

* >
x+1 for X > 0.



We can see at once that the first one is convex and continuous 

and the second one is quasiconvex. We have

inf f,(x) - O, inf f,(x) - 2,
x c R  xaSpff,)

because Sĵ f.,) [1,+®«).

Let c - 1. Then c satisfies

and

because

Therefore

inf f,(x) < c < inf f9(x)
x f R  xe SR<f,)

(y t f,(y) - 1} * 0.

SR/A{y f2(y) < 1)<f1) ° {0)'

{y ! f,(y) < 1} * (-c>»,0].

VR(f1ff2) a  {y : f2<y) » 1} - 0,

but

SRn{y : f 2 W  < 1) * i0} '

Thus for

c - 1, VR(fr f2) a  {y : f2 (y) - c) )< SRn{y , fj(y) <

Let X be a vector space over the real field. Later we shall 

glye examples of the group of three convex and continuous func-

tions for which the equalities are not satisfied;

(A) VG (f., ,f2,f3) a  {ye  X ; f 1 (y) - c} ^

* VG a  {y e X : f,(y) < c}(f2'f3)



or

(B) vQ(f1,f2,f3) n {y « X » f,(y) « c,J 'o {y « X i f2(y) - c2) +

i

* SG n  (y e X i f 1 (y) < c.,) n (ye X s f2(y) < c2J ̂ f 3* *

Hence we know that the natural equivalents of the equality of 

Bacopoulos and Singer are not satisfied for three functions.

2 2 
Example A. Let X *» R , R * (-00 ,+«o), G * R ,

f^x^xj) ■ ! x21 »

f2(x1 ,X2) ■ IX1 - 1 I ,

f3(x1,X2) « |X1 + 1 I .

Me shall show that VR2(f2#f3) ** [-1,1] « R. Let (x1, x2) £

i [-1,1] *R thus x1 fi 1-1,1]. Therefore

x1 < -1, x2 ~ an arl>itrary number,

or

x̂  > 1, x2 - an arbitrary number.

In the first case we consider the point (-1,x2), then it can be 

easily proved that

(f2(-1,x2), f3(-1,x2)) < vf2(x1,x2), f3(x1,x2)).

Then (x1#x2)ii VR2(f2,f3).

In the second case for the point (1,x_) we have the inequa-

lity

<f2(1,x2), f3(1,x2)) < (f2(x1,x2), f3(x1,x2)),

thus

(x1,x2) t VR2(f2,f3).

k.



Let now (x1#x2)c [-1,1]* R. We shall show that (Xj#x2)«

e VR2(£2,f3). We assume that there exists (xj*x£) c R such

that J

( f j  ( x ^  1 X 2 )  1 ^  » X j )  ^

Therefore 1x^-11 < Ix, —11 and 1x^*11 < lx.,+11 with at least

one of these Inequalities being strict# and it is impossible. The-

refore we have vR2(f2,f3) - [-1,1] » R. Now we shall show that

VR2(fr f2,f3> - [-1,1] « (0).

Let (xt,x2) i [-1,1] * {0). We have two cases* x., i [-1,1] or

x2 yt 0. The first case, if x, < -1 then at the point (-1, Xj)

we have

f.|(-1,x2) - Ix21 - f1(x1,x2),

f2(-1,x2) - 2 < f2(x1#x2),

f3(-1,x2) - 0 < f3(x1fx2),

thus ‘

(f, (-1,x2) ,f2 (-1,x2) ,f>(-1,x2)) < (f, (xi;x2) ,f2(x,,x2) ,f3(x1,x2)>.

Similarly for the point (x^xj) such that x, > 1 there is a 

point {-l,x2> for which we have inequality given above. That 

means that (x.,,x2) 4 VR2(f,,f2,f3>. We consider the remaining 

case. s

Let now (x1,x2) be the point such that x2 f 0. We consi-

der a point (Xj,0). Then we obtain

f t (x1,0) = 0 < -I x21 * f^x^xj), 

f2(x1,0) - f2(x1,x2),

f3(x1,0) f3(x1fx2),



which means that i

(f1(Xj,0),f2(x1#0),f3(x1#0)) < (£1(x1,x2),f2(x1,x2),f3(x1,x2)), 

therefore

(x1,x2) ^ Vr2(f^,f2,f3>.

Let (x^,x2> « [-1,1] * JO). We assume that there exists the
2

point (x!J »xj) e R such that

f1(xt,x2) < f1(x1,x2),

f2(x1,x2) < f2<x1*x2>»

f3 ,x2) 4 ^3ix̂  »Xj)f

with at least one of these inequalities being strict and it is 

impossible, because for f̂  we have not strict inequality and 

neither for f2*f3, because as it| was shown VR2(f2,f3) ■ [-1,1] *

* R. Thus

VR2(f1,f2,f3) - [-1,1] x {0).

For c * 1 we have

and

Vr2(f1,f2,f3) A { ( x 1fx2) ; f1(x1,x2) = 1)

([-1,1] * {0}) n ((R * {-1J) U (R * (1))) = 0

1V a ( f ~ , f )
R n (R » [-1,1])

Example B. Let X = R, G = R. Let f1 (x) * I X i, ¿2 (x) = Ixl ,



f3(x) * O and c1 |l Cj, C1 ,c 2 > °* We have

ty * f-j (y) ■ c, } a  (y t f2 (y) ■ c2l *» 0

therefore

VR (flff2,f3) a  ( y s f1 (y) w c1 ) r» {y s f2(y) = c2) “ 0

but

SG a  {y « f.,(y) < c^} r> {y : f2<y) < c2)(f3)

= R a  {x : Ixl < miMc.j.Cj)} i4 0.

In the case A we can also give an easy example in which

W W  * 0*

Let X * R, G =* R, f 1 (x) = x, f2(x) * 0 and f3(x) ■ 0. Then

we have

VG*f1,f2'f3̂  * 0

but

VR A {X : x <  c}(f2'f3> D {x : x < c>*

At present we shall discuss in which way the set of minimal 

points in scalar and vectorial program changes when we consider 

the sequence of functions {fn } which is almost uniformly con-

vergent to the function f (or the sequence of the pair of func-

tions {(f^,f^)} almost uniformly convergent to (f^fj)).

See the necessary definitions ([1]# [3], 15])* We shall re-

call that a point . belonging to topological space X belongs to 

upper topological limit of the sequence of sets An (p e Ls AR) 

if and only if every neighbourhood of the point p has the common 

point» with infinite number of the sets An-

Theorem 5. Let X be a locally compact linear topological 

vector space. Let {fn } be a sequence of continuous functions 

on' X. We assume that the sequence {fn } is almost uniformly



convergent to f. Let A Sx (f). Let An “■ sx (fn)• w® assume 

that A f1 O. Then Ls An c A.

P r o o f .  We shall show that If x ft A then x ^ Ls A .

' *Let

f(x ) > inf f (x).
° xe A

Since, as we know [6], A is closed, thus there is a neigh-

bourhood U of the point xQ such that U n a ■ 0. (e.g. U = 

» X - A). Since X is T3, - space (see [3], p. 193) thus the-

re exists a neighbourhood UQ c u such that UQ c u and 0Q is 

compact. The function f is a continuous one, as the limit of 

almost uniformly convergent sequence of continuous functions. 

Decreasing, if necessary, the neighbourhood Uo , then by the 

continuity of the function f we have that for every x e UQ

lf(x) - fix) I < 4<f(x ) - inf f(x)).
° J ° xe X

Let C * UQ U {x} where x e A, The set C is compact as the 

union of two compact sets. By the almost uniform convergence of 

the sequence {f'n ) we have that the sequence {fnIC} is uni-

formly convergent to the function f|C. Then there is N such 

that for n > N and for every x e C

If (x) - f(x)I < 4(f(x) - inf fix)). 
n 3 ° x e X

In particular for x s c

f_(x) < f(x) + E = inf f (x) + E ,

where

n xe X

E = i(f(x ) - inf f(x)).
J ° xe X

Then we have that for every x e UQ and for; n > N

f (x) > f(x) - £ > f(x ) - 2E = inf f(x) + E > f (x) 
n ° x eX

Thus for every x e UD and n > N



That means that x 4 Afi i.e. UQ n An * 0 for n > N. Therefore 

x 4 La A„ and it is the end of the proof. We shall show thatn n ...
the equality not always holds.

Example. We consider a sequence of functions (fn) defined by

“ rIxl for x e R. We can see that the sequence (f_l is n n n
almost uniformly convergent to f ■ 0. Then we have An « {0}, 

A ■ R. .It is.worth noticing that for the convex function of one 

variable we can \nake the sequence of broken lines (fn) inscrib-

ed in the graph of the function f such that Ls AR ■ A.

Let

< x-k < X_k+1 < •** K xo < X1 < < *k <

be a sequence of divisions of the line

(,ln)-----„<n.
' * k-oo K k-<x> '

We assume that the diameter of division converges to zero for 

n-ao. Le 

ditions

n-oo. Let f be the function .which satisfies the following con-

v 4 nl> - ''-k"’1

and fn is the continuous and linear in ]• Then by

the assumption that A / 0, the sequence tfn ) i* convergent to 

f whereas for an arbitrary number N > 0 the convergence on the

interval [-N,N] is uniform and we have Ls A » A. For the pairn •
of functions (even convex ones ) the analogical theorem to the 

above one does not hold which is shown in the following examples;

Let X be a vector space over the real field. Let H be an 

arbitrary Hamel's basis in X (see [4], p. 55-56). Let x1 e H. 

Let for x e x, a(x) be a coefficient of x1 in the development 

of x in the relation to H. We shall construct sequences of

the pairs of convex functions {<fjn* >} such that fjn*—  f,

and f2 in every point x e X. Let G = R. We denote



VG (fjn) ,f*n)) = Vn and VG (fr f2> * V.

We shall show examples of sequences of functions such that 

(>f) Vn » 0, V » X,

(B) Vn - X, V « 0.

Hence, for eyery topology in the example At Ls Vn ^ V, whereas 

in the example Bs Ls Vn ^ V.

Example A. Let

f1<n> (X) ” n a(X) ' f1 (X) " °'

f <n)(x) - 0, f2(x) - 0.

We shall show that for two sequences of functions Vn » 0. Let 

*Q c X. If * x'e X for which a(x') < a(xQ) then

fjn>(x') - I a(x') < 1  a(x0) - f{n)(xQ),

f^n)<x') - 0 - f2n)(xc ).

That means that for every xQ e X there is x' such that

<f*n)(x'),f*n><x')> < (f,n)<x0),f2n>(xQ))•

Therefore x 4. V thus V = 0. Now we shall show that V = X.
o n n

**®t xq c X, as it can be easily seen xQ e V, because if x0 ̂

* V then there exists x e X such that x / xQ

and

(f j(x),f2(x)) < (f1(x0).f2<x0>)

and it is impossible since f1 (xQ) * f^(x) = 0 * f2^xo  ̂ * * 2 'A * ’

Since v *= 0 thus Ls V =0. Therefore Ls V S 
n n * ^

Example B. Let for X  6 X



fjn)(x) - -¿a(x), f1(x) - 0

fjn)(x) - -a(x), f2(x) - -a(x).

We shall show that an arbitrary point xQ « X belongs to Vn, i.e.

V ■ X. We consider x e X and we shall show that the following 
n <

case is impossible:

f{n)(x) < t\n)(xQ),'

f‘n)(x) < f2n > U 0>

with at least 'one of these inequalities being strict. We consi-

der three cases

1) a(x) - a(xQ)

then

f{n)(x) - fjn)(xQ) - I  a(x0)

f2n>(x> * f20>(xo> " -a(xo)-

2) a(x) > a(xQ)

then

f{n)(x) - I  a(x) > J a(xQ ) - f}n)(xo), 

fin)(x) = -a(x) < -a(x ) - fin)(x ).

3) a(x) < a(xQ)

then we have

f,(n) (x) ■ -J- a(x) < 4 » ( x )  * f.(n)(x J,

f2n)(x) » -a(x) > "»(xo ) - f2n)(xQ)

Therefore V„ * X.n
Now we shall show that V * 0. Let xQ e X be an arbitrary 

point. We shall show that there always exists x'e X such that



f1 (x') < f j(xQ), 

fj(x') < f2(xo)

*nd that means that xQ 4 V and it prove:* that V = 0. It is suf-

ficient in this case to take for x' suqh a point for which

Mx') > a(x ). Since V * X, then Ls V ® X. Considering that
o n n

v ■ 0 we have that Ls Vn ^ V.

The last two theorems give relation between local and global 

minimum for one quasiconvex function and for the pair quasicon-

vex functions.

Theorem 6. If the function f i X ■* R (X - a vector space over

the real field) is strictly quasiconvex and xQ e X is a point

for which there exists a set A such that x q  e  Int alg A and

f(x ) ■ inf f(x), 
xe A

f(x ) ■ inf f(x).
° xe X

P r o o f .  We assume that there exists x‘e X such that 

f(x') < f(xQ). Then for every X e  (0,1) we have

f(Xx1 + (1 - X) xQ) < max(f(x'),f(xQ)) » f(xQ).

Since’ x^ e Int alg A thus there is X > O such that foro 3 o

0 < X < < 1 we have

Xx' + (1 - X)xo e A

and

f(x ) > inf f(x),
° x 6 A

'"'hich is impossible, therefore the point of local minimum is the 

P°int of global minimum too.

Theorem 7. Let X be a vector space over the real field. If 

f1 8 X - R, f . x -* R are strictly quasiconvex functions and 

*o 6 x is a point for which there exists the set A such that 

*o e Int alg A and xp e VA (f1,f2) ‘ then xQ e V^f.,,^).

t



P r o o f .  We assume that xQ ft That means that

there exists x' e X such that

f,(x.') < f,(xQ),

f2(x*) < ij^o^ v

with at least one of these inequalities being strict. Since

x e int alg A then there exists X > 0 , such that for 0 < X <o , o

< \>

Xx' + (1 - *)xo e A

and both inequalities (one of them being strict) remain which 

is impossible.

If only f1 is strictly quasiconvex and f2 is upper linear 

semi-continuous then the last theorem is false, as we shall show
*

in the following example.

Example. We consider two real functions defined on R

f (x) » 0 for x e R,

f2 (x) * x - Ixl for x « R.

It is easy to see that the first one is convex and the second 

one is continuous.

Let A = (0,1). We shall show that V^if^.fj) * (0,1) but

VR(f1,f2) = 0. It is easy to see that for every x 6 (0,1) there 

is no point x' e (0,1) such that

f,(x*) < ft(x), 

f2(xf) < f2 (x)

with at least one of these inequalities being strict, because 

f1 (x) » f2(x) for every x e (0,1). Therefore x e VA (f1,f2) and

thus (0,1) C VA (f1,f2). Since A - (0,1) thus Vft(f1,f2) - (0,1)•

The set VR (f^,f2) is empty, because for every x e R there is

x' < min(x,0) for which we have



^(x) - O - fjix'), 

f2(x) > f2(x').

Let X be a vector space and G be a closed convex subset X. Ba-

copoulos and Singer proved that; for every convex and lower semi-

“continuous functions fj»f2 on for every convex closed
subset G of Go

SG (fA) / <f> (I - 1,2)

then the set

MG (fr,f2) « 6 R * go e VG (f1'f2)}

la either the curve or the point.

. If we assume that f^fj- are 

of the above theorem by Bacopoulos and Singer is false

. If we assume that f^fj- are strictly quasiconvex, the thesis

Example. Let R, G - R 

x

f2 (*)

for x < 0, 

x+1 for x > 0, 

-x+1 for x < 0, 

-x for x > 0.

*t is easy to see that VR (fj,f2> * R, because for an arbitrary 

* * R we cannot find the point x' such that

f 1 (x') < ft(x), 

f2(x'/ < f2(x)

'"'ith at least one of these inequalities being strict, since for

* x we have both equalities, and for x' < x or x' > x for 

0ne function we have the strict inequality with converse direc-

tion than for the second function.

Thus we have

R = VR (fr f2)

MR (f1'f2> =

x, -x+1 

X+1, -X

for

for

x < 0,

x >. 0.



It is <?Asy to see that the set is not the curve (even

it is rot connected).
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Genowefa Rzepecka

METODA SKALARYZACJI BACOPOULOSA I SINGERA 

W PROGRAMOWANIU WEKTOROWYM

Praca zawiera uogólnienie twierdzenia Bacopoulosa-Singera dotyczącego ska- 1 

laryzacji programowania wektorowego dla pary funkcji wypukłych okreilonych na

przestrzeni liniowej.

Pokazano, że metoda skalaryzkcji Bacopoulosa i Singera da si<5 zastosować 

w przypadku, gdy pierwsza funkcja jest liniowo półciągła z góry, a druga

ściśle quasiwypukla.

Na prostych przykładach wykazano, że analogicznej metody nie można zasto-

sować dla trójki fankcji wypukłych.

Zbadano również związek między rozwiązaniami lokalnymi i globalnymi zada-

nia programowania wektorowego oraz zachowanie się zbioru elementów minimal-

nych przy przejściu do granicy ciągu par funkcji.


