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THE TURAN FUNCTIONAL FOR UNIVALENT POLYNOMIALS

In this note there has been obtained an effective exact estima-

tion from below of some expression

M   ̂ 'I i 1 1 \

k  w2i *

rr

w, w2 1 /

for the parameters w)t w^ defining the canonical univalent polyno-

mials

INTRODUCTION

In various branches of analysis, the estimation from below of 

®xpressions of type

v \>
Max I 2. + ... + z I

v - 1, n 1

£°r some sets of complex arguments ..., zn finds its appli-

cation. They were dealt with by, in particular, T u r a n, C a s -

a l s ,  A t k i n s o n ,  Ł a w r y n o w i c z  and others, 

^ith that it is here the question of both universal estimations 

With every n, not necessarily sharp (cf. [1], [2], [9], [10]), 

and estimations for specified n, exact (cf. [7], [8]).
In the present note we give an exact estimation of this ex-

[91]



pression for n ■ 3, for arguments corresponding to canonical uni-

valent polynomials (cf. [3] and [5]).

will be called normalized. From the definition it can be seen

that such polynomials do not reduce to constants, and that zeros 

their derivatives are different from 0 .
2. Let wk , k = 1, ..., n, stand for distinct zeros the

derivative of a polynomial of type (1.1), whereas k ■ 1,
n, their multiplicities. In that case, polynomial (1.1), 

can be represented in the form

Then, between the position of the zeros w^ and of the values

the relations

hold (cf. [5] part II, th. 1).

3. Fcfr given polynomials (1.1), let denote the greatest

domain of the complex plane, containing the point 0 and 3uch 
that IP(w)| < 1 for w s pp. The domain jip will be called a 

domain associated with polynomial (1.1). Directly from the defi-

nition of the domain jip it follows that IP(w)| * 1 £or w e 

€ dup.

I. TERMS, NOTATIONS AND AUXILIARY NOTES

1. Polynomials of the form

(1 .1) m > 1

(1 .2 )

0

With the above notations, let still

(1.3) 5k - ' k * 1 '

(1.4)
(m+1)4m+1 Max lg.),

1 < k< n . K

k * 1f •••f n#



4. In order that polynomial (1.1) be univalent, it is neces-

sary and sufficient that all zeros of Its derivative lie outside 

pp (cf. [3], lemma 4).

5. Polynomial (1,1) will be called canonical when all zeros 

of its derivative lie on the boundary of the associated domain 

pp, that is, when
 ̂ *
(1.5) wk * ®Up, i.e. |P(wk)|«*i, k ■ 1 n.

Such polynomials do exist, in particular, such are those ^hich 

realize the extrema of some functionals (cf. [3], th. 5). We 

notice that, in accordance with (1.2), condition (1.5) can be 

written in the form
i , i 

wk n *k

(1.5') í  n f i )  a"
O k-1 x K '

1,

and relations (.1*4), on account of (1.3) and (1.5), in the form

' (1.4') | < |wk l < (m+1)4n,+ 1, k « 1, ..., n.

6 . The family of all normalized univalent polynomials of type

(1.1) considered in associated domains, of degree not greater 

than M where M > 1, will be denoted by *M (cf. [3]). ^  

will stand for the family of all canonical polynomials of degree 

M belonging to The families y M and are compact

(of. [3], p. 16 and [4], lemma 8 and [6]).
7. If {a„}, {b } are sequences with non-neoative terms,

3 S
converging to a and b, respectively, then, as can easily be 

seen, >

(1.6) lim + b8 * Max (a,b).
3 S8 -*>00

*

Hence, if a3 + bs ■+ O, s - 1, 2, ... and at least one of the s s

numbers a,b is different from zero, then



(1.6*) lim ilog (a® + b®) « log Max (a,b)_ 8 8 8S -* oo

XI. ESTIMATION OF THE MAXIMUM FROM BELOW 

Let us consider on the family a functional

,i.t) t p . „ „ ( | ^ . J L | ,  | V ^ | )
'1 2

where P e f 3, and w2 are zeros of the derivative of P.

As can be seen, this functional is continuous and different from

zero.

Theorem. For each polynomial P « the sharp estimation

(2.2) Tp > ^2T ~  \/<7 - a) (5 + a)"

holds, where a * 1/197 + V \ 1 5^? + 197 - ^41 5Iff.

The extremal polynomials realizing the equality sign are of 

the form

(2.3) P*(w) - w - — (7 - a + e �  (7—a) (2+a)' i) e-18 w2 +

+ ||| (5 - 2a + 2E y(7-a) (2+a)' i) e~21° w3,

where E>, = +1, 8 - a real number.

P r o o f .  We shall carry .it out by three stages given be-

low.

1. Auxiliary and limit polynomials and parameters

Having regard to 7, %let us consider on for any momently

fixed s, an auxiliary functional



(2.4) F® - ^  log (|i■ + ¿-| + | T  + t I  )' p 6 ?3 '
1 *  • W .j * t

w^, w2 are zero» of the derivative of P. This functional is, 

as can be seen, defined and continuous; since the family £3 is 

compact, there exists an auxiliary polynomial p£ e ^  which rea-

lizes Minimum of (2.4), that is, for each P e £3» the ine-
quality

(2.5) F® > FP * 'p* 
8

is true, i.e. 

(2.5')

1 0 9  (IJ +
w: wr I I*, *2 +
Is 2s ,w 1s 2s

where the auxiliary parameters w 1, w2 are zeros of the deriva-

tive of P, and w*s« wJs - zeros of the derivative of P*. In

view of the compactness of the family £3 and (1.4 '), choosing 

subsequences if necessary, one may assume that the parameters and 
Polynomials

w- w* 8 10 2s
1, 2 , ...,

converge to some limit ones

(2.7) 2-  J _  P *
W1 w2

of which the first two are finite and different from zero accor-

ding to (1.4'), whereas the third is a canonical polynomial of

family with zeros w*, w* of its derivative. Passing



to the limit in (2 .5 '), we have, according to (1.6 '), for each

p 6 *3'

(2.8) lCg Ma
I

i.e.

(2 .8 *)

log Max

l 1 1 1 - 1 I \
w. w, ' I? 3* JI 1 2 ■

1 2

11 1 * 1  ̂» I
hi ~ 9 ~~*2 "3*2
1 w2 w1 w2 1

Max

Max 1
11

\ lw w2 lwi W2 I

that is, coming back to (2.1), we have Tp > Tp*. The polyno-

mial P* realizes, of course, the equality signs in (2.8) and 

(2 .8 '), i.e. minimum of functional (2.1).
Consequently, the justification of (2.2) is reduced 'to the 

investigation and determination of auxiliary and limit- polyno-

mials and parameters as well as values of (2 .1) corresponding to 

them.

2. Equations for auxiliary parameters

We now notice that if w 1, w2 are arbitrary and sufficiently 

close to w* , w*s and satisfy the conditions 

w

(2.9)
3

jj d  - ~ ~ ) O  - tt) < M  - 1, j - 1, 2 ,w 1

then inequality (2.4') holds. Indeed, in the case under conside-

ration the polynomial

' p<w) = J (1 ‘ (1 " %~2) dw



is sufficiently close to the canonical one

P> >  - I (1 " V >  (1 - V >  dw
0 w 1s w2s

and satisfies conditions (2.9), i.e. it is canonical (cf. [5], part 

1, th. 1). In consequence, it satisfies inequality (2.5), i.e. 

(2.5') .

In this situation, by putting 

<2 -10) fs(wl' w2 ' " v  Wj) -

6 +

and i

(2-H) 9 , ( w, . w2» w,, w2 ) *

(2*12) g2 (w1* w2' 51' "2 1 *

■ ( « i - i s j X ® ,  - f ^ )  - *.

. -I ' �

from the above we get at once that function (2.10) attains at

the point (w *8» w2s' * 1a' -̂oca  ̂minimum associated,

^der the conditions for the vanishing of functions (2 .11) and 

i2«12), in the sense as described in [4], p. 6 and 7. This en-

vies one to apply the known result (cf. [4], lomma 4) accor-

ding to which, there exists a non-trivial system of real multi-



pliers T's, %'s, X2g, corresponding to conditions (2.9), such 

that at the extremal point (w*a* W2S' * 1s' ^*8 '̂ the e<3uationB

8fs . 0g 1 dg2
r s aw^ “ X1s dw, +, *2s 3w. ' j “ 1* 2 '

as well as (2.9) are satisfied; hence, in conformity with nota-

tions (2.10), (2.11), (2.12) and (2.9), after carrying out 

some simple calculations and introducting notations r » ~\x' ,
B  /. S

*1. " 4 K . r  X2s m 4 ^2s' we obtain the equations

js

(2.13)

Iw* + w* 1s 2s

,2s

1 -

js

1 -

,2s

*
0 W • ̂
13 wrks

#*2 w* 2 1s 2s

w*1 ks
3 w ~

1 _js
3 w J ks

+ Xks
l9_

i - 1 V
3 "js

and

(2.14)

¥■2

w* - 1 !la
j 8 3 w14 ks

4, j = 1, 2 , k = 3 - j.

Finally, by applying the evident normalization, it can be assumed
that

(2.15)
Ts + X1s + Xls m 1' 1 » 2 ,

(2.13)-(2.15) represent the sought - for equations for auxiliary
parameters.



i 3. Equations for limit parameters

Let us now put 

(2.16) Ms - Max

then, in accordance with (2.7), there exists a limit

(2.17) lim Mt
«-►•o

* / 11 1 1 . 1
■ M - Max “  + 9 “72 ~Í2

\ 1 w2 W1 2 )
different from zero; at the same time, after choosing (if nece-

ssary) convergent subsequences, one may assume that there exist 

limits

(2.18)

and

(2.19)

lim T , A. 15 lim X • g i j ° 1, 2, 
s-oo J s-oo J

lim
S -00

-—  + -—  
« . * 

w 1s 2s

2s-2
! M

2s-2

lim 
s —00

1 *  1
"Í2 + T 2
w 1s w2s

2s-2 „2s-2 _
* Ms ‘ <?2 '

which (2.18) are finite and not all zero by (2.15), whereas 

(2-19), according to (2.16), are not all zero, either, and sati-

sfy the conditions

(2.20) ° < £j < 1, j * 1, 2 .

What is more, we obtain notice that if, for some j, there Is 

(2.21) ft o, then - U  +
w* 3 w* 3 W1 2

s M *=  1.

prom this and the above it follows that there is always



fi W w #2 * O.

1

In the light of what has been said above, we may now pass to 

the limit in (2.13)-(2.15). Talcing account of notations (2.18) 

and (2.19), we get the equations

w . \ w, wr / * wi‘ \ w, W, /
r — 1— !----  2------ 3---- 3---- r ----- "

i j l  * JLl +1 -L, +1 -1«
fil T>5 „#2 <?2

(2 .2 2)

1 _ 1

L) , - p  
3 uk

w*1 k
3 vT

1

and

(2.23) , .  i 
3 * w

k

-.4, j - 1, 2, k - 3 - j

(2.24)

In order to examine these equations, we put

(2.25) t - w* /w *.

We notice that, according to (2.7), ratio (2.25) is finite and 

unequal to zero. With notation (2.25), equations (2.23) take the 

form ..

(2.26) « 2 1 2 |w*| I 1 - -j tl - 4,

■» 2 1 2
I w*| 11 ~ 3t' “ 4 •



Prom the equations obtained it is first seen that t / 3 and t / 

y 1/3 and next, by dividing them, we get*

(2.28') tt - 1 or

(2.28") t2t2 - 3(tt * 1)(t + t) + lOtt + 1 - 0 .

The examination of equations (2.22) will be carried out in 

the cases given below.

a. r - 0. Then equations (2.22), after taking (2.25) into 

account, take the form

(2.29) j j V i  ‘ 0.

«2.30) », r H  * »! s r H  " °-

After adding them up, we get

x, + x2 - o.

Prom this and (2.24) it follows that X, * 0 and X2 / O 

®limination of these multipliers from (2.29) and (2.30) gives

-6t2 + 12t - 6 - 0 ,

that is,

t - 1.

Hence and from (2.26) and (2.27) we obtain '

w* « 3eiS, w* = 3e18, 6 - a real number. 

Substituting the found values w*, w* into (2 .8 '), we get 

^•31) Max

The

M  ^ 1 1 j. 1 1
~  + “ , ~Í2

1 w 1 w2 W 1 2 1

b. 1 ? 0. Then, applying division (if necessary), one may
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adopt T ** 1. On account of conditions (2.20), we distinguish 

three subcases.

(i) + 0 , i>2 “ Then* in virtue of (2 .21), we get

(2.32) t + -1.

■In view of that, equations 2.22 take the form

(2.33) t + 1 “ *1 V = H  + X2 3t - 1 '

(2.34) t + 1 “ *1 3 - t + *2 3t - i ’

Adding them up, we obtain

(2.35) 5̂  + %2 m 1*

From (2.35) it follows that X1 and %2 are not all zero! 

The equations: (2.33), the one conjugate to it and (2.35) can 

be treated as linear equations homogeneous with respect to Vj, 

X 2 , 1. The elimination of the multipliers X,, * 2 and 1 from 

then gives, after comparing the corresponding determinant to ze-

ro,

(2.36') t ■ 1, or (2.36") t - t, or (2.36"') tt ♦

- 3 (t + t) + 1 « 0

Now, it is necessary to consider six systems of equations, resul-

ting from (2.28') or (2.28") and (2.36') or (2.36") or (2.36"'). 

Cases (2.28') and (2.36'), (2.28') and (2.36"), (2.28") and 

(2.36') need not be worked out.

In case (2.28") and (2.36"), by eliminating t, we obtain

t4 - 6t3 + 10t? - 6t + 1 - 0 , 

next, in case (2.28') and (3.36"'), by eliminating t, we get

3 (t + £) - 2 » 0,



and finally, in case (2.28") and (2.36"'),r by eliminating t + t, 

we obtain an Inconsistent equation.

The solving of the equations in the five cases in question 

gives, respectively,

t ■ 1; t » 1 or t - -1; t ■ 1 j

t *> 1 or t » 1 or t *= 2 + C v/T,

C - ¿1, t - \ + C~ v̂ 'i, I » -1.

According to (2.32), the relation t ■ -1 is impossible. In the 

remaining cases, on the ground of equation (2.26), we have five 

contingencies

w* « 3e1S, w* ** 3elS? w* - + Z )eiS, w* = 3(%/T - Z )el6>;

WJ -  I f . * ,  w j « - £ ( 1  - C 2 v/? i)eiS,

where ® - a real number. For the found pairs w*, w2, ' the ex-

pression on the right-hand side of (2 .8 ') takes the values

<2-37) f, Y <  9 ^ '
2 v/J 4 

respectively.

(ii) £>1 »0, £2 ®1. Then, by (2.21), we get

(2. 38) t2 f1 -1.

Ir> view of this fact, equations (2 .22) take the form

1 , 3 - 2t , V  --1a, , _ r + S

Proceeding quite analogously as before, we obtain



(2.39') t « 1, or (2.39") - t, or (2.39"') -t2t2 -

- 5(tt+ 1) (t + t) + 6 (t + t) 2 - 2tt + 1 - 0 .

Similarly as before, one ought to consider six systems of equa-

tions, resulting from (2.28') or (2.28") and (2.39') or (2.39") or 

(2.39"’). The first four cases are identical as previously! in case 

(2.28') and (2.29"'), by eliminating t, we obtain

next, in case (2.28") and (2.39"'), by eliminating t + t, we get

5t2t2 - 22tt + 5 - 0 .

The solving of the equations in the discussed.six cases gives 

t - 1; t * 1  or t « -1j t - 1> t - 1 j or t - 1

or t = 2 + E v/I, E - -1; t - -i or t - i or t - —  -,

E -
\

±1} t 1 4 (2 + 6t) , E - “ 1, 6 - ¿1.

In accordance with (2.38), the relations t - -i and t » i 

are impossible.

In the remaining cases, on the ground of equation (2.26), we 

have ten contingencies

w * = 3 e 19, w * - 3 e i6, w* - Je19, wj - -|eiS; w* - 3(</T+E)ei9,

w* - 3(v/T-E)eiQ; w* - ^ | e i9, v* - t^(5-£v/T? i)e19;

w* , 6 y i-- ; j ^ eie, w* - (3 - S ^ e 19,

where e is a real number. For the found pairs w*# Wj# the

expressions 11. + 1 - ! w it- and

1 «2 I

1 . 1 I 
*2 #2 

W1 W2 1

take the values



2 4 vr x/y yr? yrr . 2 8 _2 25 %/r?
3' I' 3 ' 18 ' 16 9' 9' 9' 108' 18 '

respectively, which indicates that

M* «■ JL + JL >
w^ w*1 2

1 + 1 —  
“72 + ~^2 
w* w*

Whereas in the case under consideration, in virtue of (2.21), 
there, should be

I 1__ , J__ I ,
~ 2  + — ¿2\ : M “ U

I w 1 w2 I

(iii) ? O, £2 ^ °* Then, according to (2.21), we have

JL + J_ 
* * s M * 1 and 1 + 1 

“ ¿2 + “ #2 S
* tt fi

W1 W2 w w

that is, 

(2.40) - — -11 + tl - — 4— -=tj + t2| . 
Iwfl |w*r

After eliminating I w* | from equations (2.26) and (2.40), we get 

(2-41) (t2t2 + (t + t ) 2 - 2tt + 1)(i tt - ^(t + t) + 1) -

- 4 (tt + t + t + 1) - 0.

*t is now necessary to consider two systems of equations (2.28') 

an<* (2.41), and (2.28") and (2.41). We shall first deal with 

latter. The elimination of t + t gives, for tt, the equa-
tion

11(tt) 4 + 76(tt) 3 + 114(tt)2 + 7 6 (11) + 11 = 0

^hich, as Is easily seen, possesses no positive roots. system 

>28') and (2.41) gives the equation
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(t + t) 3 - + t ) 2 + 12(t + t) + 24 m 0

which, as can easily be verified, possesses on real root. App-'

lying the Cardano formulae, we get

J .
3 U v

t + t =  -| 2_ i(  y  197 -vi 1 553° + y  197 +viT"55?’).

From this and (2.28') we obtain

t - | - fa + e f v  (7 - a) (2 + aY i' E ’

where
2  _ 3 .■

a = y  197 -v£l 553’ ‘ + >/l97 + ">/41 5531' .

The found t and equation (2.26) give

* 9 .16(2.42) w = ■ .....~  e ,
1 >/3(5 + a)

w
5 - 2a - 2£ /(7 - a) (2 + a)* i „18

2 v/3 (5 + aV
e , 8 - real.

For the pair w*, w* obtained, the expression on the right-

-hand side of (2.1) takes the value

(2.43) /(7 - a) (5 + a)1.

To sum up, from (2.31), (2.37) and (2.43) we have that the 

expression on the right-hand side of (2.8 '), and thus of (2.1)/
is no less than

Min (3 ' T~' - a) (5 + a)) *

It should still be shown that inequality (2.2) is sharp. For 

the purpose, it suffices to put values (2.42) in formula (1.2)

to obtain all polynomials realizing in (2.2) the equality sign. 

After simple calculations we get that they are of the form (2.3).
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FUNKCJONAŁ TURANA DLA WIELOMIANÓW JEDNOKROTNYCH

Uzyskuje się efektywne, dokładne oszacowanie od dołu wyrażenia

(O T » Max 
P

dlä Parametrów w^, w^ okres łających wielomiany jednokrotne kanonicze



w

Ograniczenie wynosi

gdzie a ,« /197 + x/*41 553' + /197 - >Al 553̂

Parametry ekstremalne realizujące znak równości wynoszą

w
- 5 - 2a - 2C V(l - a^2 » i

y/3 (5 + aj

gdz ie O - liczba rzeczywista, E " -1.

Dowód oparty jest na własnościach wielomianów kanonicznych (por. [5] i 

[6]) i wyznaczaniu ekstremum lokalnego przy warunkach pobocznych zespolonych 

(pot. ŁO lemat 4).

Wyrażenia typu (i) dla parametrów z koła jednostkowego były badane ogól-

nie między innymi przez T u r a n a i efektywnie przez Ł a w r y n o w i —

c z a  (por. [7], [8], [9]).


