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A l i o j a  J a n t a e

ON SOME ISOPERIMETRIC PROBLEM 

IN THE SPACE OF GENERALIZED FINITE MEASURES

In the paper there has been considered a minimal value of the 

functional

F <u>) - F ( ff (t)ip(t)dt), (t)if(t)dt)
o 1 o j o 'J. n

in the family L . of functions defined at least on the interyal
C #K

I * [a.b], measurable, Lebesgue intergrable and satisfying the con-

ditions

j\f(t)dt - c, Jl<f(t)ldt < !c

for k > Ici, k > 0, under the constraints

F.lif) - F, ( ff (t)<p(t)dt, ,ff (t)(f(t)dt) “ 1-,
J J j 0 X

j - 1, ..., m.

The functions f , , f are defined and continous on the interval
0 n n+t

I, whereas the functions Fq, .... F ,̂ defined in the space R ,

are of class c'.

1 . INTRODUCTION

Denote by f , ..., f n a finite system of real-valuea func-

tions defined and continuous on the interval I <= [a, b], whe-

reas by F , F - a system of functions of the class C 1, 
1 o' m .

defined in the space R . Let further L . denote the familyC / lv

135]
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of functions defined $t least on I, measurable, Lebesgue inte-

grable, and satisfying the conditions:

(1.1) J (f (t) dt » c, J I <p <t) Idt < k.

where c and k are any fixed real numbers such that k > let,

k > 0 .
Let the topology in L„ . be a weak topology induced from the« C g K

space L' of all summable functions with the first power on the 

interval I.

Consider the following variational problem:

Problem 1. Determine the minimal value of the functional

(1.2) FQ (<p) - Fq (j* fQ (t> <p (t)dt, j f^(t) <f (t)dt, ...,

J fn(t) <p (t)dt)

I

in the family L . , under the conditions
C f K

(1.3) F (<f) - Fj (J fQ (t> <p (t)dt, J f1 (t) if (t)dt,

J fn (t).(f (t)dt) = ljf j - 1, 2 r • • • »

where 1  ̂ are any preassigned finite real numbers.

Simple examples show that the variational problem thus for-

mulated does not always possess a solution. This follows from 

the fact that the family L *v , with arbitrary valueB of c,k,C|K
k > let, k > o, is not weakly compact in itself.

Consequently, we shall extend Problem J to a variational 

problem in the space of generalized finite measures, in the sense 

of I o f f e  and T i k h o m i r o v '  s definition [1]. For 

it turns out that the problem thus extended possesses a solution 

and preserves the lower bound of the functional.

The method of extending variational problems was initiated 

by H i l b e r t  and applied, among others, by V o u n g  [2] 

and K r o t o v  [3].
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. The present paper includes a method of solving the extended 

problem.

■ i

2.'NOTATION AND AUXILIARY THEOREMS

V- ..
V  ' ' *

Denote by £) the family of all distribution functions $ 

satisfying the following conditions!

1° i> is a non-decreasing function,

2° <b is a function continuous on the right,

3° $ (t) ■ 0 for t e (-00 , a),
4° (t) ■ $ (b) for t e [ b, oo ).

For further considerations, we shall introduce the following 

notation:

'M - the family of generalized finite measures defined on the 

cf-field of Borel sets of the space R, cumulated on the inter-

val I,

- the family of finite (in the usual sense) measures de-

fined on the d-field of Borel sets of the space R, cumulated on 

the interval I,

jh0 - the subset of the family OtlQ , composed of measures 

Absolutely continuous with respect to the Lebesgue measure,

3tt(M) - the subset of the family OT, composed of gene-

ralized measures absolutely continuous with respect to the Le-

besgue measure, with the derivative <f> (t) e [-M,m] for almost 

all t e R,

3nQ (M) - the subset of the family WtQ , composed of measures 

absolutely continuous with respect to the Lebesgue measure, 

with the derivative <p (t) ̂  [0,m ] for almost all t e R,

m  - the subset of the family W  , composed of those ge-
C f K

neralized measures which satisfy the condition p(I) * c and 

can be represented in the form

P = Pi “ tv

where , p2 are measures in the usual sense, such that

1 (I ) + k

for k. > IcI, k > 0.



It is not hard to show that the family m  c ^ is identical 

with the family of those generalized measures p c W  which sa-

tisfy the conditions

¿1(1) « c, l̂il (I) 4 k

for k > Icl, k > 0 .
From the form of a measure absolutely continuous with res-

pect to the Lebesgue measure it follows that; all the families of

measures we have introduced are non-empty.
i

Let further C([a,b]) denote the space of functions conti-

nuous on the closed interval [a,b], whereas C*([a,b]) - the 

space conjugate to it (cf. [4], p. 28). Let the topology in 

the family tW be a weak--»-topology induced from the space

C#( [a,b]) .

In order to formulate a variational problem extended with 

respect to Problem 1, we shall prove

/
Lerma 2.1. Let E be any positive number, and let g ̂ , j = 

= 1, ..., m, be fixed continuous functions on R.

For any measure ¡a e there exists a measure p0 6
with some Mq , such that p(I) * jiQ (I) and

(2.1) ij g^(t)dp - J gj(t)dpo l < Z, j = 1, ..., m.

I I

P r o o f .  For a given measure ji e let us put

$(t) = p( (-00 , t]) .

The function $ thus defined is non-decreasing, continuous on

the right and satisfying the conditions

§(t) = 0 for t e (-00 ,a) ,

$(.t) = $(b) for t s [b, oo ) ,

and consequently, > belongs to £2. Conversely, let us take 

any distribution function § e Q. It can be shown (cf. [5], p. 

176) that the distribution function $ induces some measure 

e caJ led the Lebesgue-Stieltejes measure.»

Consequently, between elements of the families £1 and m o 

there, exists a one-to-one correspondence and, moreover,



(2.2) J qj(t)d$ - J g^(t)dp, j » 1, ..., m,

I I

where p is the measure induced by the distribution function $. 

So, let p be any measure belonging to the family onQ , $ 

the distribution function induced by it. For every non-decrea-

sing function $, there exists a piecewise constant function 
$ s £} ( such that

(2.3) i j  gj(t)d$ - J  gj(t)d$l < ~, j � 1, . . . ,  m.

I I

Denote, successively, by ^ , ..., jump points of the func-

tion $. The function $ can be so chosen that a < T1 < T2 <
< ... < Tn < b. Through the point ( ,  $(1^)) let us draw a

straight line with the equation y ■ M*(t - T̂ ) + $ ( Tt). With

sufficiently large, the line intersects the graph of the 

function $ at one point. Denote it by (T ,̂ $ ( T p ). Since the

number of jumps is finite, one may choose Mq universal for 

every 1. Let us now define the function

MQ (t - + 4  (T^ for *r' < t 4 *i,

i « 1 , ... , n

for the remaining t's.
i

The function $ (t) thus defined is continuous, with the deri- 
Mo

vative equal to zero or Mq. with Mq - oo , $ M (t) - $(t) for
' o

every t. By Helly's theorem,

<2.4) J  g_j (t ) d$M (t) — » j* gj(t)d$(t), j = 1, ..., m,

I ° I

consequently, there exists some MQ such that the function $ -

= satisfies the following inequalities
o

(2.5) |J g^(t)d$(t) - J  g^(t)d$(t)l < j = 1, m.

I 1

(t) -

$ (t)



Let 11 be the measure induced by the distribution function 

$. Since $ is an absolutely continuous function, the measure 

po, corresponding to it, is absolutely continuous with respect 

to the Lebesgue measure. Moreover, the derivative (f(t) of the 

measure with respect to the Lebesgue measure is almost every-

where' equal to the derivative of the function $. Consequently, 

the function <p satisfies the inequality 0 < (f (t) < MQ for 

almost all t a R. Hence it appears that fi W 0 <M0>-

In virtue of inequalities (2.3), (2.5) and equality (2.2), 

we obtain condition (2 .1) of the proposition.

Moreover, p(I) “ $(b) - $(a ) ■ $(b) - |S(a ) ** • which

concludes the proof.

By the last lemma, the definitions of the families T/f̂ (M), 

3nc and of the weak * -neighbourhood, we obtain

lemma 2.2. The family 5rt0 is dense in W Q, that is, ■

» On , where tin denotes the closure in the weak-#-topology.

Let a mapping assigning to elements of the set ^  ^ genera-

lized measures absolutely continuous with respect to the Lebes-

gue measure, belonging- to the family W c be defined by the

equality

So, we shall formulate a problem extended with respect to

o o

3. FORMULATION OF THE EXTENDED PROBLEM

(3.D
A

Problem 1 from the space , Lc ^ to the space Oilc k I

Prooien 2. Determine the minimal value of the functional

I

in the family M  . under the conditions

»



(3.3) Fjip) - FjiJ *Q <t,dP' •••• J fn <t)dp) - 1 ,
I I

j °* 1, 2, • « « i in«

From (3.1) and Lemma 2.3 it follows that Problem 2 satis-

fies all the definition conditions of the extended problem.

Note that, if there exists at least one generalized measure 

p e k satisfying conditions (3.3), then variational problem

2 possesses a solution. This follows from the fact that, by the 

Alaoglu theorem [6 ], the family to . is weakly-#-compact inC f K
itself, and the functionals F^, i » 0 , 1 , ..., m, are conti-

nuous in the weak-»-topology of the space W  . .
C |  K

In the sequel, we shall give a method of solving Problem 2. 

With that end in view, we shall consider some other auxiliary 

sets.

4. GENERAL CHARACTERIZATION OF THE FAMILIES L (M), L(M), 3ft (M)o o

Denote by L(M) the set of Lebesgue measurable functions (j> 

satisfyinf almost everywhere the conditions:

<p(t) e [ -M r M ] for t e l ,

(4.1)

If it) - 0 for t e R \ I,

and by LQ (M) - the set of Lebesgue measurable functions (p sa-

tisfying almost everywhere the conditions:

<p(t) e [o, M] for t e l ,

(4.2)

<|>(t) = 0 for t e R \ I.

From the definitions of the families L(M) and there

follows at once

(■
Lemma 4.1. The set L(M) can be represented in the form of 

the algebraic difference •

Moreover, there takes place



L-jmma 4.2. Between elements of the seta L0 M  an<* OT^iM) , 

as well as L(M) and W(M), there holds a one-to-one corres-

pondence.
The proof follows from the definitions of the families L(M) 

and L 0 <M) , we have adopted and the fact that the assignment in 

question is given by formula (3.1).

Lot p *= - p2 be a Jordan decomposition of a generalized

measure p e 3*i.

• I

Lemma 4.3. The set wt can be represented in the form of the 

algebraic difference ‘TrtQ - 31t0, whereas W(M) - In the form of 

the algebraic difference 3tlQ (M) - 3T̂ (M) .

The proof follows from the theorem on the Jordan decomposi-

tion of a generalized measure p and from the Radon-Nlkodym the-

orem £7 ] •

5. PROPERTIES OF THE SET Vq(M)

Let us denote

VQ = | x e Rn+2j x = x(p) “(j* fQ (t)dp, ..., J fn(t)dp,

I I

j* dp) , p € m o }

and

Vq (M) =| x e Rn+2? x m x (p) -

= (J fQ (t)dp, .... J f n < t) dp, j*dp) , ¿1 6 W 0 (M)|.
I l l

The sets V and V_(M) may be treated as sets Of (n+2)-
o o +2

-dimensional vectors of the apace R with coordinates

f fQ (t)dp, J fn (t)dp, J* dp.

I I I



Lemm  5.1. The set Vq (M) is sequentially compact in itself 

and convex.

P r o o f. Note that the set Vq (M) can be represented in 

the following equivalent form

<5.1) V0 (M) « { x e  Rn+2! x »(]* fQ (t) <f (t)dt, ...,

I

J fn(t) <p (t)dt, J* <t)dt) , <f> e Lo (M)]..

I I

The proposition follows from the convexity and weak - # -com-

pactness of the family LQ (M).

Let now v « (v°, vn+1) be any vector of the space Rn^2.

Consider a function (v, f) where f « (fQ, ..., fn+i>« f n+1 “ 1 •

In the sequel, we shall assume that, with each v c  Rn+2,

n+1
(5.2) <v,f) - ^  vifi(t) * 0

i«0

on any set of the positive Lebesgue measure.

Under this assumption we shall prove the following

Lemma 5.2. Int Vq (M) ft 0.

P r o o f .  Suppose, centrariwise, that Int VQ (M) =0. De-

note by H a carrying hyperplane of the set Vq (M). It is well 

known (cf. [8 ], p. 199) that, if Int Vq (M) = 0, then dim

H < n + 2. Consequently, there exists a vector v = (v° , ,
n+1 ^ ®

v0 ) / 0 orthogonal to H, i.e. such that (vQ , x) = 0 for

any x e  Vq (M). So,

<vo' (J fo (t) V (tIdt' •••* fn (t) ip (t)dt, j*(p(t)dt)) =
I I I

n+1

** J (^^ v ^f ^ t J X p  (t)dt *» o

I i=0

f°r any function <f e Lq (M). Thus, (vQ ,f(t)) = 0 almost eve-



rywhere on I. This fact, contradicting assumption (5.2) proves

the proposition.

It follows from Lemmas 5.1. and 5.3 that, at each boundary ( 

point x# of the set Vq (M), there exists a vector vM suppor-

ting the set.

Definition 5.1. The measure p*e 3tt0 (M) , satisfying the con-

is called a boundary measure with respect to the set VQ (M).

Let be the derivative of the boundary measure p * . We

shall prove

Theorem 5.1. The derivative of the boundary measure with respect 

to the set VQ (M) is double-valued, that is,

the point x*.

P r o o f. From the definition of a supporting vector ' it 

follows that (vM , x* - x) > 0  for any x e V0 <M)* Then

dition

M for t e z(v„) a.e.,
(5.3)I M

0 for v t 6 R \ Z(vM) a.e.,
I M

where

v e

n+1
is a vector supporting the set VQ (M) at

(vM ,x*) - (vM ,x) = J (vM , f (t) ) [<p*(t) - (f(t)]dt > 0
I

for any function (p e t-0 (M) . Hence we get



M when (vM> f(t)) > 0 a.e.

O when (vM , f(t)) < 0 a.e.

which ends the proof.

6. PROPERTIES OF THE SET Vo

Let us recall that

VQ « (x 6 R'n+2

x ■ x(p) • ( J fQ (t)dp • • • § J* fn(t)d{i, j* dp) , p « W e) .

I I I

We shall prove

Lemma 6.1. The set VQ is a convex cone with apex at zero. 

Moreover, dim VQ ■ n+2,- and Int VQ + 0.

P r o o f .  Since, with any M > 0, the set V0 <M)CV Q , the-
refore, by tern» 5.3, Int VQ t 0. The remaining properties of 

the set VQ follow immediately from the definitions of a cone 

and of a convex set.
In .the sequel, we shall prove that the set VQ is a closed 

set, and characterize its boundary points. For the purpose, con-

sider a hyperplane in the space Rn+2, with the equation

x . * d, d > O. Let V r\ H. be a cross section of the cone 
n+i o a

VQ by this hyperplane. The set VQ n / 0 since the set of 

measures satisfying the condition xn+  ̂ ** d, d > 0 , is not em-

pty.

Lemna 6.3. The set VQ n Hd is sequentially compact in it-

self.'

P r o o f .  The set VQ r\ Hd is the image of the set of 

those measures belonging to OttQ which satisfy the condition 

j* dp » d. The set of those measures is weakly-»-compact, in it-

self, therefore, from any sequence {xm j of elements of the set 

VQ n Hd of the form



xm " x(Pm) " (J fo(t)dPm' J fn(t)dPm' J dPm)
I I I

one may choose a subsequence convergent to the element

xo - *<Po> “ {S fo(t)dPo.... S V t)dPo' S dPo>
I I I

belonging to VQ n Hd, where J\dF0 * which completes the

I

proof. ■—

From the fact that the cross section VQ r\ is sequential-

ly compact in itself with any d ^ 0 there follows

Lemma 6.3. V is a closed set.
o

Remark 6.1. It follows from Leima 2.1. that each point x ef 

e Vo r\ Hd is the limit of a sequence of point {xnJ where xn e

e V (M ) r> H. with some M . If x is a boundary point of the
o n a n

set VQ, then the sequence {xn) can be so chosen that xR

should be a boundary point of the set v0 <Mn) with every n.

Remark 6.2. The sets VQ (M) form a family of ascending sets.

7. CHARACTERIZATION OF BOUNDARY POINTS OF THE SET Vo

Let now be a sequence of absolutely continuous distri-

bution functions belonging to Q and such that = d, d >

> O. Then

t

&n(t) = f <pn (t)dt. 
a.

Denote by {M ) a sequence of positive numbers, tending to 

+ oo. Assume that cp̂ it) , n = 1, 2, ..., is a piecewise con-

stant function taking the values Mn on kn disjoint intervals

[t.jn, t2n ], ..., [t2k _ y  t2£ ] contained in I, and zero at the
n n



remaining points of the Interval I. The number of intervals k
n

may alter as n does.

Theorem 7.1. Let N be a fixed positive integer. If, with

every n, the number of intervals k , in which (P (t) - M ,n • n n

does not exceed N , then from the sequence one may choose

a subsequence convergent to some non-decreasing function

which is piecewise constant, possesses at most N jump points,

and $ (b) * d.

P r o o f .  The number of maximal intervals in which the 

functions are different from a constant is bounded by N,

therefore, from the sequence let us choose a subsequence

composed of those functions which are different from a constant 

on exactly s, s < N, disjoint ma&imal intervals. Of course, on

these intervals (fn » Mr. Denote them by (t,n, t-,n) , ..., 

(t2s-1' t2s) ‘ Consider now the sequences {t±n} with any fixed

i » 1, 2, ..., 2s. From every sequence {tin} let us choose a 

subsequence monotonically convergent to t ^  & I. In the sequel, 

subsequences will be denoted by the same letters as sequences 

are. From the conditions J <pn (t)dt * d and Mn - oo it follows

that the length of the interval t2k - t^.., - 0 , k = 1, 2 , ...,

s. So, we have tl^^ -» and, at the same time, t2” -

k « 1, ..., s. Consequently, - t2° » ^ t 2g_ 1 = t°g =

** ^B ' Then, from the sequence ,i$nl °ne may choose a subse-

quence convergent at each point to some non-decreasing function 

$Q . We shall show that it is piecewise constant.

Let t', t" be any points of the interval (T ,̂ » £ "

~ any positive number. We then have

(7-l> l$D (t') - $n (t')l < | 

and

(7.2) l$n (t") - $n (t")l < |

for n sufficiently large. Moreover,



(7.3) ^n(t>) “ ®n(tM)

for n sufficiently large. From condition* (7.1), (7.2) and

(7.3) it follows thi.t

1 V0 (t') " f0 (t")l < £ .

In view of the arbitrariness of E , we get

$0 (t') - $c(t"). • i

Since $n(b) = d, n « 1, 2, ..., therefore $Q (b) ■ d. Conse-

quently, is a piecewise constant non-decreasing function 

whose number of jump points does not exceed N. Finally, in or-

der that be a function continuous on the right, let us make 

a change of its values at a finite number of .points. So, $Q thus 

obtained is the distribution function of the measure cumulated 

at the points Xy, .... Tg 6 I, s 4 N, c ft, which ends the 

proof.

Remark 7.1. A subset of the interval (a,b) has a positive 

measure when it contains at least onfe jump point of the func-

tion since

- w  ■ v v *

The measure of any interval contained in the interval ^Tk'

Tj_ + 1) is equal to zero.

Let now x' be a boundary point of the set VQ . Since VQ 

is a closed set, there exists a measure u* « Oft such thatt Q
x - x(u* , The r asure p* will be called a boundary measure

with respect to the i*et Vc .

— *
7.2. If, .rith any non-zero v s R , the conditions

the set 2 (v) is tho union of at most N disjoint

intervals

atisfieâ, then



1° for each boundary point x* of the set V , there exists 

a boundary measure p* cumulated at s, s < N, points of the 

interval I;

* 2° for any E > 0 , there exists a measure u e 3ft (M) with
» o

some M, cumulated on- s, s < N, disjoint subintervals of I, 

such that Ix* - x(p)l" < E.

P r o o f .  Let x * -  x(p*) - (x*. ..., x*,d) be any boun-

dary point of the set VQ. By KemarA 6.1, for the boundary 

measure p* with respect to the set VQ, there exists a 

sequence of boundary measures p*n e **0 <Mn> with respect to the 

sets vQ (Mn)' such that the sequence of images of these mea-

sures *<p*) is convergent to the point x(p*) , and p*(D “ d.

Denote by the distribution function of the measure p*,

whereas its derivative - by if*. It follows from Theorem 5.1 

that (f* is a piecewise constant function taking the values 0 

or Mn only. On the ground of assumption (7.4) and Theorem 7.1, 

from the sequence of distribution functions {$ } induced by the
♦ n

measures pn one may choose a subsequence convergent to the pie-

cewise constant distribution function possessing at most N 

jump points. Denote by pQ the measure induced by the distribu-

tion function By Helly's theorem, the sequence of integrals

I fi(t) dt*n * j* fi(t)d $n(t)'
I I

with every i * 0 , 1, n, converges to the integral

J fi(t)d *Q (t) = J fA(t)d pQ .
I I

Consequently, the sequence {x<p*)} of images of the measures 
#•
pn tends to the image of the measure p^, and on the other hand, 

it tends to x(p*) * x*.

Hence

x(p*) = x(pQ),

which means that any boundary point x* of the sec V is the 

image of the measure cumulated at s, a < N, points of the in-

terval I.



The other part of the proposition follows directly from Lem-

ma 2.1, which completes the proof.

Let p be any generalized measure belonging to the family 

W, k , and p * p1 - p2 - some decomposition of this measure.

We then have

J dP * I dh  ' i dP2 " °
I I I

and

i dPl + S dP2 " k -
I I

Hence

f dPi = $ dP2 = " ?  •
i i

Furthermore, denote by G the algebraic difference of the sets

V a H. , V a  H. 
o k+c o k-c

2 2

Lemma 7.1. The set G is sequentially compact in itself and

convex.

The proof follows directly from the sequential compactness 

in itself as well as from the convexity of the set VQ A U d with

any d > 0.

Also, it is not hard to prove

Lemu 7.2. Each boundary point of the set G is brought into 

the set G by boundary, points of the sets Vq a vq a Hk-c"
—  —

From this the following corollary results:

corollary. Under assumption (7.4) each boundary point of the 

set G is the image of a generalized measure cumulated at at most

2s points of the interval I.

Theorem 7.3. If there exists at least one generalized mea-

sarfi a fe 5ft , satisfying conditions (3.3), then Problem 2 pos-
C / K



If, moreover, assumption (7.4) is satisfied, and

(7.5) ' grad F , ..., grad F
o m

are linearly independent vectors, then there exists a generali-

zed measure p* cumulated at k, k < 2N, points of thu interval 

I, which is the solution of Problem .2.

P r o o f .  Note that the solution of Problem 2 is reduced to

the determination of the minimum of the function F (x) » F (x ,
o o o

..., x ) on the set G, under the conditions F.(x) = F.(x ,
J 3

xn̂  = *j* j “ 1, •.., m. Since all functionals Fo (p),..., F,(i (p)

do not depend on the coordinate xn+-j > the search of the minimum 

of the function FQ (x) on the set G under the conditions F. (>:) = 

“ Ijf j ** 1# ..., m, is equivalent to the search of the condi-

tional minimum of the function FQ (x) on the projection 3 of 

the set G onto the space Rn+1. The set G has the non-empty 

interior relative with respect to the hyperplane Hc being the 

algebraic difference of the hyperplanes Hk+c, Hk and, by

T  ~ir
Comma 7.1, it is sequentially compact in itself and convex.

So, the set G is sequentially compact in itself - and convex 

and possesses the non-empty interior relative with respect to 

R . By assumption (7.5), the conditional minimum must be at-

tained on the boundary of the set G. For, if the xconditional 

Minimum were attained at an internal point xy of the set cl, 

then, by the Lagrange-Lyusternik theorem (cf. [4]', p. 75) , there 
Would exist constants XQ , ..., Xn not vanishing simultaneously, 

such that xQ would be a stationary point of the function 

+ ... + Hence it would follow that grad F , . ..,grad

are linearly dependent vectors, which is contradictory. Con-

sequently, in virtue of the corollary to Lemma 7.2, we obtain 

the proposition.

Assumptions (7.4) and (7.5) play an essential role in the 

Proof of Theorem 7.3. The number N occurring in assumption (7. 

can be effectively determined in many cases. This happens _\

the functions f (t), ..., f (t) are polynomials' or ’ inear i.y in-

dependent rational functions. In particular, N csr

mined when the functionals F , ..., F, , described /■
O '  in



are defined in some families of complex functions having familiar 
structural representations.

Theorem 7.3 also holds true without assumption (7.5), but 

then, the extremum of the function Fq can be attained 'at an 

Internal point of the set G which, in the general case, is the 

image of the measure cumulated at at most 4N points of the in-

terval I.

So, variational Problem 2 under assumption (7.4) is reduced 
to a mathematical programming problem.

8. APPLICATION OF THEOREM 7.3 TO SOME EXTREMAL PROBLEMS 

IN THE CLASS OF FUNCTIONS WITH BOUNDED BOUNDARY ROTATION

In 1931 P a a t e r o  [9] introduced and investigated the_ 
class of analytic functions which he called functions with
bounded rotation of the image boundary.

A function f belongs to the class if it satisfies the
following conditions:

1° f(z) is holoiporphic, and f'(z) t1 0 for z « K  ■ (zilzl <

< 1),
2° f(z) is normalized by the conditions f(0) ■ O, f'(0) “

* 1 *
3° f(z) maps the disc K onto the domain G with bounded 

boundary rotation (cf. [9]).

P a a t e r o  [9] proved that f e if and only if

3t

(8 .1) f'(z) - exp J - log (1 - ze-it) dp,

-31

where p is the generalized finite measure cumulated on 'the in-

terval [-JT, 3T ] , normalized by the conditions

«r or

J  dp - 2 , J  I dp! < k for k > 2 . j

-31 -JT*

Moreover, log (1 - ze ifc), denotes that branch of the logarithm

which, for z * 0, takes the value zero.
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Theorem 7.3 allows one to characterize the generalized ex-

tremal measure p* In all the extremal problems in the clalss 

under consideration which can be written down in the formalism 

of Problem 3 . / •

Consider« fojr example, a problem of max lf'(z )1 where z
f 6 vk

is a fixed point of the disc Izl < 1.

Denote by the class of functions h having a structural

representation of the form

JT

(8.2) h(z) - J  log (1 - ze-it) dp,

-JT

where

JT 9T
J  dp ■ 2, J  Idpl < k.
-3T -ir

On account of (8.1), the problem considered is reduced to 

the finding of the minimum of the functional 1

; nr
FQ (h) - re h(zQ ) * re J  log (1 - zQe” ) dp

-or

in the class B^.

It Is not difficult to verify that in this case the number

of intervals in which the function (v, f(t)) takes its values

greater than or equal to zero in the interval C - JT, 31 3 , with
2

any v € R , is at most equal to two; consequently, by Theorem

7.3, the extremal measure is cumulated at at most four points

of the interval [ - 3T, 3T ] .

Let us now consider the special case of Problem 2 for c =

* k  = 2, a =* - 3T, b*= 3T. The family Oti! 2 2 is the set of fi-

nite measures cumulated on the interval [ - 3T, 3T ] , normed by 
3T

the condition J* dp => 2. In this case, with assumptions (7.4) 
-3T

a°d (7.5) satisfied, the extremal measure is cumulated at at 

m°st n points of the interval 3T 3 •



This result is consonant to theorem 6 of paper [10], p. 28. 

In particular, the application of the theorem obtained to isope- 

rimetric problems considered in some families of complex func-

tions, such as starlike, convex, with positive real part, and 

other ones, whose integral representations depend on the measure 

in the usual sense, aliows one to obtain a characterization of 

extremal measures identical with that in paper [10],

So, /Theorem 7.3 and its special case for c *= k * 2 give a 

general characterization of boundary functions with respect to a 

wide class of functionals considered in many well-known classes 

of analytic functions.

G o o d m a n  [11] was one of the first scientists to pay 

attention to the possibility of expressing extremal problems for 

continuous functionals, defined in some classes of univalent 

functions, as problems of optimal control. This idea was made 

use of later in papers [12], [13], [10] and [14].
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Alicja Jantas

0 PEWNYM ZADANIU IZOPERYMETRYCZNYM 

W PRZESTRZENI UOGÓLNIONYCH MIAR SKOŃCZONYCH

W pracy rozważa się następujące zadanie wariancyjne. 

Wyznaczyć minimum funkcjonału

F0(<P) - F0(J f0(t)<f(t)dt, ..., J fn(t)(f(t)dt)

w rodzinie L . funkcji w, określonych przynajmniej na przedziale I “ [a, 
C * K

b], mierzalnych, całkowalnych w sensie Lebesgue'a i spełniających warunki

J (f(t)dt - c, J I (p(t)ldt < k

I I

dla k > lc|, k > 0  przy ograniczeniach

Fj (<f) » F (J* fQ(t)(p(t)dt....  J* fn(t) if(t)dt) - 1.,

I I

j « ( ;• .. . , m.



Funkcje f , f s« określone i ciągłe na przedziale I, zaś funkcje
o n i |

F , .... F , określone w przestrzeni Rn 84 klasy C .o m
Ponieważ rodzina L . nie jest słabo zwarta w sobie, sformułowane zada- 

nie nie zawsze posiada rozwiązanie. Dlatego zadanie to rozszerzono w pensie 

definicji A. loffego i B. Tichomirowa do zadania wariacyjnego w przestrzeni

3fł . uogólnionych miar skończonych,' spełniających warunek u (I ) ■ c i
C,K

lpl(l) < k. Takie rozszerzenie zachowuje kres dolny funkcjonału. Ponieważ

rodzina itr , jest słabo * zwarta w sobie, wiec zadanie rozszerzone zawszec ,k
posiada rozwiązanie.

Najważniejszym wynikiem pracy jest Twierdzenie 7,3 dające charakteryza-

cje miar ekstremalnych.

/


