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We investigate a fractional Dirichlet problem involving Jumarie’s derivative. Using some variational methods a theorem on the
existence and uniqueness of a solution to such problem is proved. In the proof of the main result we use a fractional counterpart of
the du Bois-Reymond fundamental lemma.

1. Introduction

In the last time, fractional calculus plays an essential role
in the fields of mathematics, physics, electronics, mechanics,
engineering, and so forth (cf. [1–5]). Many processes in
physics and engineering can be described accurately by using
systems of differential equations containing different type
of fractional derivatives. Among definitions of derivatives
of fractional order we can pick the Riemann-Liouville and
the Caputo derivatives out. Unfortunately, each of them has
different unusual properties. For instance, the Riemann-
Liouville derivative of a constant is not zero and the Caputo
derivative is defined only for differentiable functions (alter-
natively, for such functions that have no first order derivative
but then they might have fractional derivatives of all orders
less than one, see [6]).

Recently, Jumarie proposed a new definition of the frac-
tional derivative being a little modification of the Riemann-
Liouville derivative (cf. [7–10]). His definition eliminates
disadvantages of mentioned earlier derivatives, because the
Jumarie derivative of a constant is equal to zero and it is
defined for any continuous (nondifferentiable) functions.

In the paper we consider the following fractional bound-
ary problem:

(𝑥(𝛼))
(𝛼)
(𝑡) = 𝐹𝑥 (𝑡, 𝑥 (𝑡)) , for a.e. 𝑡 ∈ [𝑎, 𝑏] , (1)

𝑥 (𝑎) = 𝑥 (𝑏) = 0, (2)

where 𝛼 ∈ (1/2, 1), 𝐹 : [𝑎, 𝑏] × R𝑛 → R, and 𝑥(𝛼) denotes
Jumarie’s derivative of a function 𝑥. The above problem is a
generalization of the classical Dirichlet problem of the form

𝑥 (𝑡) = 𝐹𝑥 (𝑡, 𝑥 (𝑡)) ,

𝑥 (𝑎) = 𝑥 (𝑏) = 0.
(3)

We discuss the problem of the existence of solutions to
above problem. In our investigations we use some variational
method given in [11]. First, we consider some integral func-
tional depending on the Jumarie derivative, for which (1) is
the Euler-Lagrange equation. Next, we prove existence of a
critical point ofmentioned functional in an appropriate space
of functions and under suitable assumptions of regularity,
coercivity, and convexity. In order to do it, we use the
following.

Proposition 1 (see [11]). If 𝑋 is a reflexive Banach space and
the functionalL : 𝑋 → R is coercive and sequentially weakly
lower semicontinuos, then it possesses at least one minimum at
𝑥0 ∈ 𝑋.

Let us remind that a functional L defined on a Banach
space𝑋 is coercive ifL(𝑥) → ∞ whenever ‖𝑥‖ → ∞, and
L is sequentially weakly lower semicontinuous at 𝑥0 ∈ 𝑋 if
lim inf𝑛→∞L(𝑥𝑛) ≥ L(𝑥0) for any sequence {𝑥𝑛} ⊂ 𝑋 such
that 𝑥𝑛 ⇀ 𝑥0 weakly in𝑋.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 248517, 9 pages
http://dx.doi.org/10.1155/2015/248517

http://dx.doi.org/10.1155/2015/248517


2 Mathematical Problems in Engineering

Of course such critical point is a minimizer of this
functional and it generates the solution to problem (1)-(2).
In order to prove that a minimum point gives a solution
it is sufficient to apply a fractional version of the du Bois-
Reymond lemma obtained in Section 3. Results of a such type
for the Dirichlet problem involving the Riemann-Liouville
derivative have been obtained in [12].

The paper is organized as follows. In Section 2, we
review some basic definitions and facts concerning fractional
calculus that we need in the sequel. Moreover, we introduce
the space of solutions to considered problem and give some
useful properties of this space. In Section 3, we formulate
and prove some fractional version of the du Bois-Reymond
Lemma, which we use in the proof of the main result.
Mentioned main results of the work, namely, a theorem on
the existence and uniqueness of a solution to problem (1)-(2),
are formulated and proved in Section 4.

2. Preliminaries

In the first part of this paper we recall some basic facts
concerning fractional calculus (cf. [3, 7–10, 13]). Next, we
introduce some function spaces, which will be used later.

2.1. Fractional Calculus. We will assume that [𝑎, 𝑏] ⊂ R is a
bounded interval.

Let 𝛼 > 0 and 𝑓 ∈ 𝐿1([𝑎, 𝑏],R𝑛). The left-sided Riemann-
Liouville integral of the function 𝑓 of order 𝛼 is defined by

(𝐼𝛼𝑎+𝑓) (𝑡) :=
1

Γ (𝛼)
∫
𝑡

𝑎

𝑓 (𝜏)
(𝑡 − 𝜏)1−𝛼

𝑑𝜏, 𝑡 ∈ [𝑎, 𝑏] a.e. (4)

In the rest of this paper we will assume that 𝛼 ∈ (0, 1).
The left-sided Riemann-Liouville derivative 𝐷𝛼𝑎+𝑓 of the

function 𝑓 of order 𝛼 is defined in the following way:

(𝐷𝛼𝑎+𝑓) (𝑡) :=
𝑑
𝑑𝑡
(𝐼1−𝛼𝑎+ 𝑓) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] a.e., (5)

provided that 𝐼1−𝛼𝑎+ 𝑓 has an absolutely continuous repre-
sentant on [𝑎, 𝑏] (i.e., there exists an absolutely continuous
function on [𝑎, 𝑏] which is equal a.e. on [𝑎, 𝑏] to 𝐼1−𝛼𝑎+ 𝑓).

Now, let us assume that 𝑓 ∈ 𝐶([𝑎, 𝑏],R𝑛).
Jumarie’s modified Riemann-Liouville derivative of the

function 𝑓 of order 𝛼 is defined by

𝑓(𝛼) (𝑡) := (𝐷𝛼𝑎+ (𝑓 (⋅) − 𝑓 (𝑎))) (𝑡)

= 1
Γ (1 − 𝛼)

𝑑
𝑑𝑡
∫
𝑡

𝑎

𝑓 (𝜏) − 𝑓 (𝑎)
(𝑡 − 𝜏)𝛼

𝑑𝜏,

𝑡 ∈ [𝑎, 𝑏] a.e.,

(6)

provided that 𝐼1−𝛼𝑎+ (𝑓(⋅) − 𝑓(𝑎)) has an absolutely continuous
representant on [𝑎, 𝑏].

Remark 2. It is easy to see that if𝑓(𝑎) = 0, then defined above
derivatives coincide. Moreover, Jumarie’s modified Riemann-
Liouville derivative of a constant equals zero.

Remark 3. The definition of fractional derivative given by (6)
is a consequence of the following fractional derivative via
difference reads defined by Jumarie:

𝑓(𝛼) (𝑡) := lim
ℎ→ 0

ℎ−𝛼
∞

∑
𝑘=1
(−1)𝑘 (

𝛼
𝑘
)𝑓 [𝑥 + (𝛼 − 𝑘) ℎ] . (7)

The (𝑑𝑡)𝛼 integral of 𝑓 is given by

∫
𝑥

𝑎

𝑓 (𝑡) (𝑑𝑡)𝛼 := 𝛼∫
𝑥

𝑎

𝑓 (𝑡) (𝑥 − 𝑡)𝛼−1 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] . (8)

We have the following theorem on the integration by
parts.

Theorem4. Let𝑓, 𝑔 ∈ 𝐶([𝑎, 𝑏],R𝑛) and there exist derivatives
𝑓(𝛼) and 𝑔(𝛼). Then

∫
𝑏

𝑎

𝑓(𝛼) (𝑡) 𝑔 (𝑡) (𝑑𝑡)𝛼

= Γ (𝛼 + 1) (𝑓 (𝑏) 𝑔 (𝑏) −𝑓 (𝑎) 𝑔 (𝑎))

−∫
𝑏

𝑎

𝑓 (𝑡) 𝑔(𝛼) (𝑡) (𝑑𝑡)𝛼 .

(9)

2.2. Space 𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛). Let 1 ⩽ 𝑝 < ∞.
Let us define the set

𝐿𝑝,𝛼 ([𝑎, 𝑏] ,R𝑛) := {𝑓 : [𝑎, 𝑏]

→R
𝑛; 𝑓-measurable, (𝑏 − ⋅)(𝛼−1)/𝑝 𝑓

∈𝐿𝑝 ([𝑎, 𝑏] ,R𝑛)}

(10)

with the norm
𝑓
𝐿𝑝,𝛼 :=

(𝑏 − ⋅)
(𝛼−1)/𝑝 𝑓𝐿𝑝

= (∫
𝑏

𝑎

𝑓 (𝑡)

𝑝 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑝

.
(11)

We will identify two functions belonging to 𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛)
that coincide a.e. on [𝑎, 𝑏].

It is easy to show that 𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛) is a Banach space. In
particular, the space 𝐿2,𝛼([𝑎, 𝑏],R𝑛), equipped with the inner
product

⟨𝑓, 𝑔⟩
𝐿2,𝛼 := ∫

𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡, (12)

is a Hilbert space.
Now,we give some properties of the space𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛).

Proposition 5. The injection

𝐿𝑝,𝛼 ([𝑎, 𝑏] ,R𝑛) ⊂ 𝐿𝑝 ([𝑎, 𝑏] ,R𝑛) (13)

is continuous.
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Proof. Let 𝑓 ∈ 𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛). Then

∫
𝑏

𝑎

𝑓 (𝑡)

𝑝 𝑑𝑡

= ∫
𝑏

𝑎

(𝑏 − 𝑡)1−𝛼 (𝑏 − 𝑡)𝛼−1 𝑓 (𝑡)

𝑝 𝑑𝑡

⩽ (𝑏 − 𝑎)1−𝛼 ∫
𝑏

𝑎

((𝑏 − 𝑡)(𝛼−1)/𝑝 𝑓 (𝑡)
)
𝑝
𝑑𝑡.

(14)

Consequently,

𝑓
𝐿𝑝 ⩽ (𝑏 − 𝑎)

(1−𝛼)/𝑝 𝑓
𝐿𝑝,𝛼 . (15)

The proof is completed.

Proposition 6 (Hölder inequality). Let 𝑓 ∈ 𝐿𝑝,𝛼([𝑎, 𝑏],R𝑛),
𝑔 ∈ 𝐿𝑞,𝛼([𝑎, 𝑏],R𝑛), and 1/𝑝 + 1/𝑞 = 1. Then 𝑓𝑔 ∈
𝐿1,𝛼([𝑎, 𝑏],R𝑛) and

∫
𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡)
 (𝑏 − 𝑡)

𝛼−1 𝑑𝑡

⩽ (∫
𝑏

𝑎

𝑓 (𝑡)

𝑝 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑝

⋅ (∫
𝑏

𝑎

𝑔 (𝑡)

𝑞 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑞

.

(16)

Proof. From theHölder inequality for the space𝐿𝑝([𝑎, 𝑏],R𝑛)
we obtain

∫
𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡)
 (𝑏 − 𝑡)

𝛼−1 𝑑𝑡

= ∫
𝑏

𝑎

((𝑏 − 𝑡)(𝛼−1)/𝑝 𝑓 (𝑡)
) ((𝑏 − 𝑡)

(𝛼−1)/𝑞 𝑔 (𝑡)
) 𝑑𝑡

⩽ (∫
𝑏

𝑎

𝑓 (𝑡)

𝑝 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑝

⋅ (∫
𝑏

𝑎

𝑔 (𝑡)

𝑞 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑞

.

(17)

Lemma 7. The operator 𝐼𝛼𝑎+ : 𝐿
𝑝,𝛼([𝑎, 𝑏],R𝑛) → 𝐿𝑝,𝛼([𝑎, 𝑏],

R𝑛) is bounded, and it means there exists a constant 𝐶𝑝 > 0
such that

𝐼
𝛼

𝑎+𝑓
𝐿𝑝,𝛼 ⩽ 𝐶𝑝

𝑓
𝐿𝑝,𝛼 , 𝑓 ∈ 𝐿𝑝,𝛼 ([𝑎, 𝑏] ,R𝑛) . (18)

Proof. Using Fubini’s Theorem and [14, Lemma 1], we obtain

𝐼
𝛼

𝑎+𝑓

𝑝

𝐿𝑝,𝛼
= ∫
𝑏

𝑎

(𝑏 − 𝑡)𝛼−1 (𝐼
𝛼

𝑎+𝑓) (𝑡)

𝑝 𝑑𝑡 ⩽ 𝑐0 ∫

𝑏

𝑎

(𝑏

− 𝑡)𝛼−1 𝐼𝛼𝑎+
𝑓 (𝑡)


𝑝 𝑑𝑡 = 𝑐0

Γ (𝛼)
∫
𝑏

𝑎

(∫
𝑡

𝑎

(𝑏 − 𝑡)𝛼−1

⋅ (𝑡 − 𝜏)𝛼−1 𝑓 (𝜏)

𝑝 𝑑𝜏)𝑑𝑡 = 𝑐0

Γ (𝛼)
∫
𝑏

𝑎

𝑓 (𝜏)

𝑝

⋅ (∫
𝑏

𝜏

(𝑏 − 𝑡)𝛼−1 (𝑡 − 𝜏)𝛼−1 𝑑𝑡) 𝑑𝜏

= {
𝑡 = 𝑏 − 𝑠 (𝑏 − 𝜏)
𝑑𝑡 = −𝑑𝑠 (𝑏 − 𝜏)

} = 𝑐0
Γ (𝛼)

∫
𝑏

𝑎

𝑓 (𝜏)

𝑝

⋅ (∫
1

0
𝑠𝛼−1 (𝑏 − 𝜏)𝛼−1 (1− 𝑠)𝛼−1 (𝑏 − 𝜏)𝛼−1

⋅ (𝑏 − 𝜏) 𝑑𝑠) 𝑑𝜏 =
𝑐0
Γ (𝛼)

∫
𝑏

𝑎

(𝑏 − 𝜏)2𝛼−1 𝑓 (𝜏)

𝑝

⋅ (∫
1

0
𝑠𝛼−1 (1− 𝑠)𝛼−1 𝑑𝑠) 𝑑𝜏 =

𝛽 (𝛼, 𝛼) 𝑐0
Γ (𝛼)

∫
𝑏

𝑎

(𝑏

− 𝜏)𝛼−1 (𝑏 − 𝜏)𝛼 𝑓 (𝜏)

𝑝 𝑑𝜏 ⩽

𝛽 (𝛼, 𝛼) 𝑐0 (𝑏 − 𝑎)
𝛼

Γ (𝛼)

⋅ ∫
𝑏

𝑎

(𝑏 − 𝜏)𝛼−1 𝑓 (𝜏)

𝑝 𝑑𝜏

=
𝛽 (𝛼, 𝛼) 𝑐0 (𝑏 − 𝑎)

𝛼

Γ (𝛼)
𝑓

𝑝

𝐿𝑝,𝛼
,

(19)

where 𝑐0 = ((𝑏 − 𝑎)𝛼/Γ(𝛼 + 1))𝑝−1, 𝛽(𝑧, 𝑢) := ∫10 𝑟
𝑧−1(1 −

𝑟)𝑢−1𝑑𝑟, 𝑧, 𝑢 > 0.
Since 𝛽(𝑧, 𝑢) = Γ(𝑧)Γ(𝑢)/Γ(𝑧 + 𝑢), it suffices to put 𝐶𝑝 =

(𝑏 − 𝑎)𝛼(Γ(𝛼)/Γ(2𝛼)Γ(𝛼 + 1)𝑝−1)1/𝑝.
The proof is completed.

2.3. Space 𝐼𝛼𝑎+(𝐿
𝑝,𝛼). Let us define the set 𝐼𝛼𝑎+(𝐿

𝑝,𝛼([𝑎, 𝑏],R𝑛))
(shortly 𝐼𝛼𝑎+(𝐿

𝑝,𝛼)) as follows:

𝐼𝛼𝑎+ (𝐿
𝑝,𝛼) := {𝑓 : [𝑎, 𝑏] →R

𝑛; 𝑓

= 𝐼𝛼𝑎+𝜑, a.e. on [𝑎, 𝑏] , 𝜑 ∈ 𝐿𝑝,𝛼 ([𝑎, 𝑏] ,R𝑛)} .
(20)

Functions belonging to 𝐼𝛼𝑎+(𝐿
𝑝,𝛼) and equal a.e. on [𝑎, 𝑏] are

identified.
FromProposition 5,we immediately obtain the following.

Proposition 8. Consider

𝐼𝛼𝑎+ (𝐿
𝑝,𝛼) ⊂ 𝐼𝛼𝑎+ (𝐿

𝑝) , (21)

where 𝐼𝛼𝑎+(𝐿
𝑝) := {𝑓 : [𝑎, 𝑏] → R𝑛; 𝑓 = 𝐼𝛼𝑎+ℎ, 𝑎.𝑒. 𝑜𝑛 [𝑎, 𝑏],

ℎ ∈ 𝐿𝑝([𝑎, 𝑏],R𝑛)}.
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From the above fact and [14, Proposition 2] it follows
that if 𝑓 ∈ 𝐼𝛼𝑎+(𝐿

𝑝,𝛼) then there exists the Riemann-Liouville
derivative𝐷𝛼𝑎+𝑓 almost everywhere on [𝑎, 𝑏].

Moreover, one can show that 𝐼𝛼𝑎+(𝐿
𝑝,𝛼) with the norm

‖ ⋅ ‖𝐼𝛼
𝑎+
(𝐿𝑝,𝛼) : 𝐼𝛼𝑎+(𝐿

𝑝,𝛼) → [0,∞) given by
𝑓
𝐼𝛼
𝑎+
(𝐿𝑝,𝛼)

:= 𝐷
𝛼

𝑎+𝑓
𝐿𝑝,𝛼 (22)

is complete and, consequently, is a Banach space. In particu-
lar, the space 𝐼𝛼𝑎+(𝐿

2,𝛼), equipped with the inner product

⟨𝑓, 𝑔⟩
𝐼𝛼
𝑎+
(𝐿2,𝛼)

:= ∫
𝑏

𝑎

(𝐷𝛼𝑎+𝑓) (𝑡) (𝐷
𝛼

𝑎+𝑔) (𝑡) (𝑏 − 𝑡)
𝛼−1 𝑑𝑡,

(23)

is a Hilbert space.

Remark 9. Let us note that in the case 𝑝 > 1/𝛼, from
Proposition 8 and [15, Property 4], it follows that

𝐼𝛼𝑎+ (𝐿
𝑝,𝛼) ⊂ 𝐼𝛼𝑎+ (𝐿

𝑝) ⊂ 𝐶0 ([𝑎, 𝑏] ,R
𝑛) , (24)

where 𝐶0([𝑎, 𝑏],R𝑛) := {𝑢 ∈ 𝐶([𝑎, 𝑏],R𝑛) : 𝑢(𝑎) = 0}. Conse-
quently, if 𝑓 ∈ 𝐼𝛼𝑎+(𝐿

𝑝,𝛼) then 𝑓 possesses Jumarie’s modified
Riemann-Liouville derivative 𝑓(𝛼) and 𝑓(𝛼) = 𝐷𝛼𝑎+𝑓. Of
course, then

𝑓
𝐼𝛼
𝑎+
(𝐿𝑝,𝛼)

:= 𝑓
(𝛼)𝐿𝑝,𝛼 . (25)

Remark 10. From Proposition 8, monography [3, Lemma
2.5(a)] and Remarks 2 and 9 it follows that if 𝑓 ∈ 𝐼𝛼𝑎+(𝐿

𝑝,𝛼)
with 𝑝 > 1/𝛼 then

𝑓 (𝑡) = 𝐼𝛼𝑎+𝑓
(𝛼) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] a.e. (26)

From the above remark and Lemma 7, we immediately
obtain the following.

Lemma 11 (fractional Poincaré Inequality). Let 𝑝 > 1/𝛼.
Then

(∫
𝑏

𝑎

𝑓 (𝑡)

𝑝 (𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑝

≤ 𝐶𝑝 (∫
𝑏

𝑎

𝑓
(𝛼) (𝑡)

𝑝
(𝑏 − 𝑡)𝛼−1 𝑑𝑡)

1/𝑝
(27)

for 𝑓 ∈ 𝐼𝛼𝑎+(𝐿
𝑝,𝛼), where 𝐶𝑝 > 0 is the constant from Lemma 7.

3. Du Bois-Reymond Lemma

In this section, we will prove the du Bois-Reymond lemma
for nondifferentiable functions.

We have the following.

Lemma 12 (du Bois-Reymond lemma). Let 𝛼 ∈ (1/2, 1), 𝑓 ∈
𝐿2,𝛼([𝑎, 𝑏],R𝑛), and

∫
𝑏

𝑎

𝑓 (𝑡) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 = 0 (28)

for any function ℎ ∈ 𝐼𝛼𝑎+(𝐿
2,𝛼) such that ℎ(𝑏) = 0. Then there

exists a constant 𝑐 ∈ R𝑛 such that 𝑓(𝑡) = 𝑐 for a.e. 𝑡 ∈ [𝑎, 𝑏]
and, consequently, 𝑓(𝛼)(𝑡) = 0 for a.e. 𝑡 ∈ [𝑎, 𝑏].

Proof. First, let us note that from the Hölder inequality (cf.
Proposition 6) it follows that the integral (28) is well-defined.
Let 𝑤(𝑡) = 𝑐 for 𝑡 ∈ [𝑎, 𝑏], where 𝑐 = (𝛼/(𝑏 − 𝑎)𝛼) ∫𝑏

𝑎
𝑓(𝑡)(𝑏 −

𝑡)𝛼−1𝑑𝑡. Then, for any function ℎ ∈ 𝐼𝛼𝑎+(𝐿
2,𝛼) such that ℎ(𝑏) =

0 (in view of Remark 9 the condition ℎ(𝑎) = 0 is satisfied
also), from assumption (28) andTheorem 4, we obtain

0 = ∫
𝑏

𝑎

𝑓 (𝑡) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 − 0

= ∫
𝑏

𝑎

𝑓 (𝑡) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 1
𝛼
∫
𝑏

𝑎

𝑤(𝛼) (𝑡) ℎ (𝑡) (𝑑𝑡)𝛼

= ∫
𝑏

𝑎

𝑓 (𝑡) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 1
𝛼
∫
𝑏

𝑎

𝑤 (𝑡) ℎ(𝛼) (𝑡) (𝑑𝑡)𝛼

+ Γ (𝛼 + 1)
𝛼

(𝑤 (𝑏) ℎ (𝑏) −𝑤 (𝑎) ℎ (𝑎))

= ∫
𝑏

𝑎

(𝑓 (𝑡) −𝑤 (𝑡)) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡.

(29)

Thus,

∫
𝑏

𝑎

(𝑓 (𝑡) −𝑤 (𝑡)) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 = 0,

ℎ ∈ 𝐼𝛼𝑎+ (𝐿
2,𝛼) , ℎ (𝑏) = 0.

(30)

Let us consider the function ℎ̂(𝑡) = (𝐼𝛼𝑎+(𝑓 − 𝑤))(𝑡) for a.e.
𝑡 ∈ [𝑎, 𝑏]. It is easy to see that ℎ̂ ∈ 𝐼𝛼𝑎+(𝐿

2,𝛼) and, in view of
Remark 9, ℎ̂(𝑎) = 0. We will show that ℎ̂(𝑏) = 0. Indeed, we
have

ℎ̂ (𝑏) = 1
Γ (𝛼)

∫
𝑏

𝑎

(𝑓 (𝑡) −𝑤 (𝑡)) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

= 1
Γ (𝛼)

∫
𝑏

𝑎

𝑓 (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑐
Γ (𝛼)

∫
𝑏

𝑎

(𝑏 − 𝑡)𝛼−1 𝑑𝑡

= 1
Γ (𝛼)

∫
𝑏

𝑎

𝑓 (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 − 𝑐
Γ (𝛼)

(𝑏 − 𝑎)𝛼

𝛼
= 0.

(31)

Consequently, the function ℎ̂ satisfies equality (30). So,

∫
𝑏

𝑎

(𝑓 (𝑡) −𝑤 (𝑡))2 (𝑏 − 𝑡)𝛼−1 𝑑𝑡 = 0. (32)
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It means that

𝑓 (𝑡) = 𝑤 (𝑡) = 𝑐, 𝑡 ∈ [𝑎, 𝑏] a.e. (33)

The proof is completed.

Remark 13. In [16] result of such a type, but for Caputo
derivative (for differentiable functions ℎ), had been proved.

Using Lemma 12, we will prove the next lemma, which
will play a key role in the next section.We have the following.

Lemma 14. Let 𝛼 ∈ (1/2, 1), 𝑓1 ∈ 𝐿2,𝛼([𝑎, 𝑏],R𝑛), 𝑓2 ∈
𝐿2([𝑎, 𝑏],R𝑛), and

∫
𝑏

𝑎

(𝑓1 (𝑡) ℎ
(𝛼) (𝑡) + 𝑓2 (𝑡) ℎ (𝑡)) (𝑏 − 𝑡)

𝛼−1 𝑑𝑡 = 0 (34)

for any function ℎ ∈ 𝐼𝛼𝑎+(𝐿
2,𝛼) such that ℎ(𝑏) = 0. Then,

𝑓1 (𝑡) = (𝐼
𝛼

𝑎+𝑓2) (𝑡) + 𝑐, 𝑡 ∈ [𝑎, 𝑏] 𝑎.𝑒., (35)

where 𝑐 ∈ R𝑛 is the constant from Lemma 12, and consequently

𝑓(𝛼)1 (𝑡) = 𝑓2 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] 𝑎.𝑒. (36)

Proof. Using the Hölder inequality for spaces 𝐿𝑝 and 𝐿𝑝,𝛼, we
check that integral (34) exists. Let us put V = 𝐼𝛼𝑎+𝑓2. Then
V ∈ 𝐼𝛼𝑎+(𝐿

2) and V(𝛼) = 𝑓2. From Theorem 4 and assumption
(34), we obtain

0 = 𝛼∫
𝑏

𝑎

(𝑓1 (𝑡) ℎ
(𝛼) (𝑡) + 𝑓2 (𝑡) ℎ (𝑡)) (𝑏 − 𝑡)

𝛼−1 𝑑𝑡

= 𝛼∫
𝑏

𝑎

𝑓1 (𝑡) ℎ
(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+∫
𝑏

𝑎

V(𝛼) (𝑡) ℎ (𝑡) (𝑑𝑡)𝛼

= 𝛼∫
𝑏

𝑎

𝑓1 (𝑡) ℎ
(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

−∫
𝑏

𝑎

V (𝑡) ℎ(𝛼) (𝑡) (𝑑𝑡)𝛼

+ Γ (𝛼 + 1) (V (𝑏) ℎ (𝑏) − V (𝑎) ℎ (𝑎))

= 𝛼∫
𝑏

𝑎

(𝑓1 (𝑡) − V (𝑡)) ℎ
(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡,

ℎ ∈ 𝐼𝛼𝑎+ (𝐿
2,𝛼) , ℎ (𝑏) = 0.

(37)

Thus

∫
𝑏

𝑎

(𝑓1 (𝑡) − V (𝑡)) ℎ
(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 = 0,

ℎ ∈ 𝐼𝛼𝑎+ (𝐿
2,𝛼) , ℎ (𝑏) = 0.

(38)

From Lemma 12 it follows that there exists a constant 𝑐 ∈ R𝑛

such that

𝑓1 (𝑡) − V (𝑡) = 𝑐, 𝑡 ∈ [𝑎, 𝑏] a.e. (39)

Consequently,

𝑓1 (𝑡) = V (𝑡) + 𝑐 = (𝐼𝛼𝑎+𝑓2) (𝑡) + 𝑐, 𝑡 ∈ [𝑎, 𝑏] a.e. (40)

It is well known that the function 𝐼𝛼𝑎+𝑓2 possesses the left-
sided Riemann-Liouville derivative and

(𝐷𝛼𝑎+𝐼
𝛼

𝑎+𝑓2) (𝑡) = 𝑓2 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] a.e. (41)

Since 𝛼 ∈ (1/2, 1), from [15, Property 4] it follows that
the function 𝐼𝛼𝑎+𝑓2 is continuous and (𝐼𝛼𝑎+𝑓2)(𝑎) = 0. Con-
sequently, it possesses also the Jumarie modified Riemann-
Liouville derivative, wchich equals 𝑓2. It means that the
function 𝑓1 has the Jumarie modified Riemann-Liouville
derivative and (using the second part of Remark 2)

𝑓(𝛼)1 (𝑡) = 𝑓2 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] a.e. (42)

The proof is completed.

4. Main Result

Let us consider Dirichlet problem (1)-(2). By a solution
to such problem we will mean a function 𝑥 ∈ 𝐼𝛼𝑎+(𝐿

2,𝛼),
satysfying condition 𝑥(𝑏) = 0, such that 𝑥(𝛼) ∈ (𝐼𝛼𝑎+(𝐿

2) +
{𝑐; 𝑐 ∈ R}).

Let us notice that since 𝛼 ∈ (1/2, 1), from Remark 9 it
follows that𝑥 and𝑥(𝛼) are continuous and𝑥 satisfies the initial
condition 𝑥(𝑎) = 0.

In order to prove the existence of solutions to problem
(1)-(2), we use variational methods.

Let us consider a functionalL of the form

L (𝑥) := ∫
𝑏

𝑎

(1
2
𝑥
(𝛼) (𝑡)

2
+𝐹 (𝑡, 𝑥 (𝑡))) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 (43)

defined on the following space

𝐾2,𝛼
0 ([𝑎, 𝑏] ,R𝑛) = 𝐾2,𝛼

0

= {𝑥 ∈ 𝐼𝛼𝑎+ (𝐿
2,𝛼) : 𝑥 (𝑏) = 0} .

(44)

We impose the following assumption on the function 𝐹:

(A1) The function

[𝑎, 𝑏] ∋ 𝑡 → 𝐹 (𝑡, 𝑥) ∈ R (45)

is measurable on [𝑎, 𝑏] for any 𝑥 ∈ R𝑛 and the
function

R
𝑛 ∋ 𝑥 → 𝐹 (𝑡, 𝑥) ∈ R (46)

is of class 𝐶1 on R for a.e. 𝑡 ∈ [𝑎, 𝑏].
(A2) There exist constants 𝑐1, 𝑐2 ≥ 0 and functions 𝛾1 ∈

𝐿1,𝛼([𝑎, 𝑏],R+) and 𝛾2 ∈ 𝐿2([𝑎, 𝑏],R+) such that

|𝐹 (𝑡, 𝑥)| ≤ 𝑐1 |𝑥| + 𝛾1 (𝑡) ,
𝐹𝑥 (𝑡, 𝑥)

 ≤ 𝑐2 |𝑥| + 𝛾2 (𝑡)
(47)

for almost every 𝑡 ∈ [𝑎, 𝑏] and all 𝑥 ∈ R𝑛.
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We say thatL possesses the first variation 𝛿L(𝑥, ℎ) at the
point𝑥 ∈ 𝐾2,𝛼

0 in the direction ℎ ∈ 𝐾2,𝛼
0 (cf. [17]) if there exists

a finite limit

𝛿L (𝑥, ℎ) = lim
𝜆→ 0

L (𝑥 + 𝜆ℎ) −L (𝑥)
𝜆

. (48)

We will prove that, under assumptions (A1) and (A2),L
possesses its minimum at a point 𝑥0 which is a solution to (1).

To begin with, we will prove the following.

Theorem 15. Let us assume that conditions (A1)-(A2) are
satisfied. Then the functional L is well-defined on 𝐾2,𝛼

0 and
possesses the first variation 𝛿L(𝑥, ℎ) at any point 𝑥 ∈ 𝐾2,𝛼

0
and in any direction ℎ ∈ 𝐾2,𝛼

0 given by

𝛿L (𝑥, ℎ)

= ∫
𝑏

𝑎

((𝑥(𝛼)) (𝑡) (ℎ(𝛼)) (𝑡) + 𝐹𝑥 (𝑡, 𝑥 (𝑡)) ℎ (𝑡))

⋅ (𝑏 − 𝑡)𝛼−1 𝑑𝑡.

(49)

Proof. The fact that L and 𝛿L are well-defined follows
directly from (A1)-(A2) and the Hölder inequality (cf.
Proposition 6). Let us fix 𝑥 ∈ 𝐾2,𝛼

0 and ℎ ∈ 𝐾2,𝛼
0 and write

the functionalL as

L =L2 ∘L1, (50)

where

L1 : 𝐾
2,𝛼
0 ∋ 𝑥 (⋅)

→ 1
2
𝑥
(𝛼) (⋅)

2
+𝐹 (⋅, 𝑥 (⋅))

∈ 𝐿1,𝛼 ([𝑎, 𝑏] ,R) ,

L2 : 𝐿
1,𝛼 ([𝑎, 𝑏] ,R) ∋ 𝑦 (⋅) → ∫

𝑏

𝑎

𝑦 (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

∈ R.

(51)

It is clear that L1 and L2 are well-defined and L2 is linear.
Moreover,

L2 (𝑦)
 ⩽ ∫
𝑏

𝑎

𝑦 (𝑡)
 (𝑏 − 𝑡)

𝛼−1 𝑑𝑡 = 𝑦
𝐿1,𝛼 ,

𝑦 ∈ 𝐿1,𝛼 ([𝑎, 𝑏] ,R) ,
(52)

so L2 is continuous. Consequently, it is differentiable in
the sense of Frechet on 𝐿1,𝛼([𝑎, 𝑏],R) and the differential
at any point 𝑦 ∈ 𝐿1,𝛼([𝑎, 𝑏],R) is equal to L2. Using the
Lebesque dominated convergence theorem and the mean
value theorem, we assert that the mapping L1 has the first
variation 𝛿L1(𝑥, ℎ) at any point𝑥 ∈ 𝐾2,𝛼

0 and in any direction
ℎ ∈ 𝐾2,𝛼

0 given by

𝛿L1 (𝑥 (⋅) , ℎ (⋅)) = (𝑥
(𝛼)) (⋅) (ℎ(𝛼)) (⋅)

+ 𝐹𝑥 (⋅, 𝑥 (⋅)) ℎ (⋅) .
(53)

This means (cf. [17, Section 2.2.2]) that there exists the first
variation of the mappingL given by equality (49).

The proof is completed.

Using the same arguments as in [15, Proposition 1 (3.3)],
we can obtain the following.

Theorem 16. Let 𝛼 ∈ (1/2, 1) and (𝑓𝑘)𝑘∈N ⊂ 𝐾2,𝛼
0 . If 𝑓𝑘 ⇀

𝑓 weakly in 𝐾2,𝛼
0 (with topology induced from 𝐼𝛼𝑎+(𝐿

2,𝛼)), then
𝑓𝑘  𝑓 uniformly on [𝑎, 𝑏].

Now, we will prove the main result of this paper, namely,
a theorem on the existence of a unique solution to problem
(1)-(2). We have the following.

Theorem 17. Let 𝛼 ∈ (1/2, 1) and assume that assumptions
(A1)-(A2) are satisfied. If there are constants 𝑎1 < 𝛼Γ(2𝛼)/(𝑏 −
𝑎)2𝛼, 𝑏1, 𝑏2 ≥ 0, such that

𝐹 (𝑡, 𝑥) ≥ −
𝑎1
2
|𝑥|2 − 𝑏1 |𝑥| − 𝑏2,

𝑡 ∈ [𝑎, 𝑏] a.e., 𝑥 ∈ R
𝑛,

(54)

then problem (1)-(2) possesses at least one solution which
minimizes functionalL. Moreover, if the function

R
𝑛 ∋ 𝑥 → 𝐹 (𝑡, 𝑥) +

𝑎1 |𝑥|2

2
∈ R (55)

is convex for a.e. 𝑡 ∈ [𝑎, 𝑏], then the solution is unique.

Proof. Let 𝑥 ∈ 𝐾2,𝛼
0 .Then from condition (54), Proposition 6,

and Lemma 11 it follows that

L (𝑥) = 1
2
‖𝑥‖2𝐼𝛼

𝑎+
(𝐿2,𝛼) +∫

𝑏

𝑎

𝐹 (𝑡, 𝑥 (𝑡)) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

≥ 1
2
‖𝑥‖2𝐼𝛼

𝑎+
(𝐿2,𝛼) −

𝑎1
2
‖𝑥‖2𝐿2,𝛼

− 𝑏1√
(𝑏 − 𝑎)𝛼

𝛼
‖𝑥‖𝐿2,𝛼 − 𝑏2

(𝑏 − 𝑎)𝛼

𝛼

≥
1 − 𝑎1𝐶2

2
2

‖𝑥‖2𝐼𝛼
𝑎+
(𝐿2,𝛼)

− 𝑏1𝐶2√
(𝑏 − 𝑎)𝛼

𝛼
‖𝑥‖𝐼𝛼

𝑎+
(𝐿2,𝛼) − 𝑏2

(𝑏 − 𝑎)𝛼

𝛼
,

(56)

where 𝐶2 = (𝑏−𝑎)
𝛼/√𝛼Γ(2𝛼) is the constant from Lemma 7.

Consequently, since 𝑎1 < 𝛼Γ(2𝛼)/(𝑏 − 𝑎)
2𝛼, 1 − 𝑎1𝐶2

2 > 0;
soL is coercive.

Now, Let 𝑥𝑘 ⇀ 𝑥0 weakly in 𝐾2,𝛼
0 . From Theorem 16 it

follows that 𝑥𝑘  𝑥0, on [𝑎, 𝑏]. Thus and from assumption
(A2), using the dominated convergence theorem, we get that

lim
𝑘→∞

∫
𝑏

𝑎

𝐹 (𝑡, 𝑥𝑘 (𝑡)) 𝑑𝑡 = ∫
𝑏

𝑎

𝐹 (𝑡, 𝑥0 (𝑡)) 𝑑𝑡. (57)
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Moreover, 𝐾2,𝛼
0 is a Hilbert space as the closed subspace

of 𝐼𝛼𝑎+(𝐿
2,𝛼). Consequently, the mapping 𝑥 → ‖𝑥‖𝐼𝛼

𝑎+
(𝐿2,𝛼) is

weakly lower semicontinuous, so

lim inf
𝑘→∞

L (𝑥𝑘) = lim inf
𝑘→∞

1
2
𝑥𝑘


2
𝐼𝛼
𝑎+
(𝐿2,𝛼)

+ lim
𝑘→∞

∫
𝑏

𝑎

𝐹 (𝑡, 𝑥𝑘 (𝑡)) 𝑑𝑡

≥L (𝑥0) .

(58)

This means that the functional L is sequentially weakly
lower semicontinuous and, by the virtue of Proposition 1, we
conclude that it possesses minimum at the point 𝑥0 ∈ 𝐾2,𝛼

0 .
FromTheorem 15 and Fermat lemma it follows that

∫
𝑏

𝑎

(𝑥(𝛼)0 (𝑡) ℎ(𝛼) (𝑡) + 𝐹𝑥 (𝑡, 𝑥0 (𝑡)) ℎ (𝑡)) (𝑏 − 𝑡)
𝛼−1 𝑑𝑡

= 0
(59)

for any ℎ ∈ 𝐾2,𝛼
0 . Applying Lemma 14, we get

(𝑥(𝛼))
(𝛼)
(𝑡) = 𝐹𝑥 (𝑡, 𝑥 (𝑡)) for a.e. 𝑡 ∈ [𝑎, 𝑏] . (60)

Since 𝑥0 ∈ 𝐾2,𝛼
0 , boundary conditions 𝑥(𝑎) = 𝑥(𝑏) = 0 are

satisfied.
The proof of the existence part is completed.
Now, we will show that, under assumption (55), the

solution to problem (1)-(2) is unique. First, let us note that
for 𝑥, 𝑦 ∈ 𝐾2,𝛼

0 , 𝑥 ̸= 𝑦, and 𝜆 ∈ (0, 1) we have

(1−𝜆)∫
𝑏

𝑎

(𝑥
(𝛼) (𝑡)

2
− 𝑎1 |𝑥 (𝑡)|

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+ 𝜆∫
𝑏

𝑎

(𝑦
(𝛼) (𝑡)

2
− 𝑎1

𝑦 (𝑡)

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

−∫
𝑏

𝑎

((1 − 𝜆) 𝑥
(𝛼) (𝑡) + 𝜆𝑦(𝛼) (𝑡)

2

− 𝑎1
(1 − 𝜆) 𝑥 (𝑡) + 𝜆𝑦 (𝑡)


2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡 = (1

−𝜆)∫
𝑏

𝑎

(𝑥
(𝛼) (𝑡)

2
− 𝑎1 |𝑥 (𝑡)|

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+ 𝜆∫
𝑏

𝑎

(𝑦
(𝛼) (𝑡)

2
− 𝑎1

𝑦 (𝑡)

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

−∫
𝑏

𝑎

((1−𝜆)2 𝑥
(𝛼) (𝑡)

2

+ 2 (1−𝜆) 𝜆 ⟨𝑥(𝛼) (𝑡) , 𝑦(𝛼) (𝑡)⟩ + 𝜆2 𝑦
(𝛼) (𝑡)

2
) (𝑏

− 𝑡)𝛼−1 𝑑𝑡 +∫
𝑏

𝑎

(𝑎1 (1−𝜆)
2 |𝑥 (𝑡)|2

+ 2𝑎1 (1−𝜆) 𝜆 ⟨𝑥 (𝑡) , 𝑦 (𝑡)⟩ + 𝑎1𝜆
2 𝑦 (𝑡)


2) (𝑏

− 𝑡)𝛼−1 𝑑𝑡 = ∫
𝑏

𝑎

((1−𝜆) 𝑥
(𝛼) (𝑡)

2

− (1−𝜆)2 𝑥
(𝛼) (𝑡)

2

− 2 (1−𝜆) 𝜆 ⟨𝑥(𝛼) (𝑡) , 𝑦(𝛼) (𝑡)⟩) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+∫
𝑏

𝑎

(𝜆 𝑦
(𝛼) (𝑡)

2
−𝜆2 𝑦

(𝛼) (𝑡)
2
) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+∫
𝑏

𝑎

(−𝑎1 (1−𝜆) |𝑥 (𝑡)|
2 + 𝑎1 (1−𝜆)

2 |𝑥 (𝑡)|2) (𝑏

− 𝑡)𝛼−1 𝑑𝑡 +∫
𝑏

𝑎

(2𝑎1 (1−𝜆) 𝜆 ⟨𝑥 (𝑡) , 𝑦 (𝑡)⟩

− 𝑎1𝜆
𝑦 (𝑡)


2 + 𝑎1𝜆

2 𝑦 (𝑡)

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

= ∫
𝑏

𝑎

((1−𝜆) 𝜆 𝑥
(𝛼) (𝑡)

2

− 2 (1−𝜆) 𝜆 ⟨𝑥(𝛼) (𝑡) , 𝑦(𝛼) (𝑡)⟩

+ (1−𝜆) 𝜆 𝑦
(𝛼) (𝑡)

2
) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑎1 ∫
𝑏

𝑎

((1−𝜆) 𝜆 |𝑥 (𝑡)|2

− 2 (1−𝜆) 𝜆 ⟨𝑥 (𝑡) , 𝑦 (𝑡)⟩ + (1−𝜆) 𝜆 𝑦 (𝑡)

2) (𝑏

− 𝑡)𝛼−1 𝑑𝑡 = (1−𝜆)

⋅ 𝜆(∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑎1 ∫
𝑏

𝑎

𝑥 (𝑡) − 𝑦 (𝑡)

2 (𝑏 − 𝑡)𝛼−1 𝑑𝑡) .

(61)

If 𝑎1 ≤ 0 then

(1−𝜆) 𝜆(∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑎1 ∫
𝑏

𝑎

𝑥 (𝑡) − 𝑦 (𝑡)

2 (𝑏 − 𝑡)𝛼−1 𝑑𝑡) ≥ (1−𝜆)

⋅ 𝜆∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡 > 0,

(62)
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otherwise, from Lemma 11 and assumption 𝑎1 < 𝛼Γ(2𝛼)/(𝑏 −
𝑎)2𝛼, it follows that

(1−𝜆) 𝜆(∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑎1 ∫
𝑏

𝑎

𝑥 (𝑡) − 𝑦 (𝑡)

2 (𝑏 − 𝑡)𝛼−1 𝑑𝑡) ≥ (1−𝜆)

⋅ 𝜆(∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡

− 𝑎1
(𝑏 − 𝑎)2𝛼

𝛼Γ (2𝛼)
∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡)

= (1−𝜆) 𝜆(1− 𝑎1
(𝑏 − 𝑎)2𝛼

𝛼Γ (2𝛼)
)

⋅ ∫
𝑏

𝑎

𝑥
(𝛼) (𝑡) − 𝑦(𝛼) (𝑡)

2
(𝑏 − 𝑡)𝛼−1 𝑑𝑡 > 0.

(63)

It means that the functional

𝐾2,𝛼
0 ∋ 𝑥

→ 1
2
∫
𝑏

𝑎

(𝑥
(𝛼) (𝑡)

2
− 𝑎1 |𝑥 (𝑡)|

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

∈ R

(64)

is strictly convex. Consequently, using assumption (55), we
assert that the functional

L (𝑥) = ∫
𝑏

𝑎

(𝐹 (𝑡, 𝑥 (𝑡)) +
𝑎1
2
|𝑥 (𝑡)|2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+ 1
2
∫
𝑏

𝑎

(𝑥
(𝛼) (𝑡)

2
− 𝑎1 |𝑥 (𝑡)|

2) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

(65)

is strictly convex, so its minimum point 𝑥0 ∈ 𝐾2,𝛼
0 is unique.

On the other hand if 𝑥 ∈ 𝐾2,𝛼
0 is a solution to (1)-(2) then

(𝑥(𝛼)0 )
(𝛼)
(𝑡) = 𝐹𝑥 (𝑡, 𝑥0 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏] a.e. (66)

Thus,

∫
𝑏

𝑎

(𝑥(𝛼)0 )
(𝛼)
(𝑡) ℎ (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

−∫
𝑏

𝑎

𝐹𝑥 (𝑡, 𝑥0 (𝑡)) ℎ (𝑡) (𝑏 − 𝑡)
𝛼−1 𝑑𝑡 = 0

(67)

for any ℎ ∈ 𝐾2,𝛼
0 and fromTheorem 4 we get

∫
𝑏

𝑎

𝑥(𝛼)0 (𝑡) ℎ(𝛼) (𝑡) (𝑏 − 𝑡)𝛼−1 𝑑𝑡

+∫
𝑏

𝑎

𝐹𝑥 (𝑡, 𝑥0 (𝑡)) ℎ (𝑡) (𝑏 − 𝑡)
𝛼−1 𝑑𝑡 = 𝛿L (𝑥0, ℎ)

= 0.

(68)

This means that the solution 𝑥0 to problem (1)-(2) is a mini-
mum point ofL, so it is unique.The proof is completed.
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Canada, 1987.

[12] R. Kamocki and M. Majewski, “On a fractional Dirichlet
problem,” in Proceedings of the 17th International Conference on
Methods andModels in Automation&Robotics (MMAR ’12), pp.
60–63, Miedzyzdrojie, Poland, August 2012.

[13] A. B. Malinowska and D. F. M. Torres, Introduction to the Frac-
tional Calculus of Variations, Imperial College Press, London,
UK, 2012.

[14] R. Kamocki, “Pontryagin maximum principle for fractional
ordinary optimal control problems,” Mathematical Methods in
the Applied Sciences, vol. 37, no. 11, pp. 1668–1686, 2014.

[15] L. Bourdin, “Existence of a weak solution for fractional Euler-
Lagrange equations,” Journal of Mathematical Analysis and
Applications, vol. 399, no. 1, pp. 239–251, 2013.



Mathematical Problems in Engineering 9

[16] M. J. Lazo and D. F. Torres, “The DuBois-Reymond funda-
mental lemma of the fractional calculus of variations and an
Euler-Lagrange equation involving only derivatives of Caputo,”
Journal of Optimization Theory and Applications, vol. 156, no. 1,
pp. 56–67, 2013.

[17] V. M. Alekse’ev, V. M. Tikhomirov, and S. V. Fomin, Optimal
Control, Fizmatlit, Moscow, Russia, 2005, (Russian).



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


