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O N  A L M O S T  R I G I D  M A T H E M A T I C A L  
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We discuss a con cept o f  an a lm o s t rigid m a the m at ic a l structure  
and a conc ept o f  au a lm o st  rigid m ath em a tic a l st ructure in the st ron g  
sense. W e com par e these tw o conc epts w ith  the usual no tio n o f  a 
rigid m ath em a t ic al  structure. We also  consider an app licat ion  o f  the  
introduced conc epts to  the theory o f  linearly  ordered sets.

Let S  be a. type of a mathematical structure in the visual sense of  
N.Bourbaki (see [I])- For example, Ï  may be the type of a topological  
structure, the type of a structure of a measurable space, the type of an 
order structure and of many others.

Suppose that our type S  satisfies the following two conditions:
1 ) for the class of all structures of this type, a class of morphisms  

(homomorphisms) is defined in such a way that we have a category in 
the standard algebraic sense;

2 ) if E  is a basic set, $  is a structure of the type S  defined on E,  
and X  is an arbitrary subset of E,  then there exists a structure S x  of 
the same type ^ such that S \  is defined on A and is induced by the 
original structure Ń.

Condition 2 ) can be called a hereditarility property of the given  
structure type S . Notice that topologies, measurable spaces and rela-
tion structures satisfy condition 2 ). There are also many other struc-
tures for which this condition is fulfilled.
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Let E  be again a basic set and let S  be some structure of the type  
S  defined on E.  Let us recall that the structure S  is rigid if the group 
of all automorphisms of .S' is a one-element set. In other words, the 
structure .S' is rigid if and only if the identity transformation of the  
basic set E  is a unique automorphism of S.

In a more general situât ion, we say that a structure S  on E  is almost  
rigid if, for every automorphism /  : ( E , $ )  —► ( E , $ )  of this structure 
onto itself, the inequality

c a rd({x  G E  : J ( x )  ф :r}) <  card(E)

holds. Further, we say that a structure S  011 E  is almost rigid in the 
strong sense if. for every monomorphism g : ( E , S )  —> ( E , S )  of this 
structure into itself, the inequality

c ard({x  G E  : y ( x)  ф .r}) <  c nrd(E)

holds. Let us remark that if a basic set E  is finite, then the notion of an 
almost rigid structure (un E) may rather frequently coincide with the 
notion of an almost rigid st ructure in the strong sense. For instance,  
suppose that £  is the type of an algebraic structure or the type of a 
structure of a linearly ordered set, and let .S’ be a structure of the type  
£  defined on a finite basic set. E.  Then it. can easily be checked that .S' 
is almost rigid if and only if .s' is almost rigid in the strong sense.

Of course, any rigid structure is almost rigid, but the converse as-
sertion is not true. It. is clear that any almost rigid structure in the  
strong sense is almost rigid, too. The following simple example shows  
us that there exists a graph structure which is almost rigid in the strong  
sense but is not rigid.

E x a m p le  1 . Let ./• and y  be any two distinct elements which do 
not belong to the countable set of integers { 1 ,2 ,. . . ,» , , . . .} .  Let us put

E  =  { x , y }  U { 1 . 2 .......» , . . . }

and let us d efin e  th e  grap h stru c tu r e  ,S' on th e  set E  b y th e  fo llo w in g  
edges:

{ ! , . , } , { I , / / } . { 1 .2 } .{ 2 , : {} ...... { , , . , ,  +  1 } ........



Then it. is not difficult to check that S  is not a rigid structure. At 
the same time S  is almost rigid in the strong sense. Moreover, here 
every monomorphism of the structure S  into itself moves at most two  
elements of the basic set E.

Let us notice, in connection with Example 1, that a structure of 
an infinite well ordered set without the last element gives us a simple  
example of a rigid structure which is not almost rigid in the strong  
sense.

Let E  lit* an infinite basic set and let .S' be a structure of the type  
S  defined on E.  The following two questions naturally arise:

Q u e s t i o n  1 . Does there exist a subset .V of the set E  with 
e ard(X  ) =  c nr d(E )  such that the structure S x  induced on X  is rigid?

Q u e s t i o n  2 . Does there exist a. subset X  of the set E  with 
c av d( X)  =  ccird(E)  such that the structure S x  induced on .V is al-
most rigid (or is almost, rigid in the strong sense)?

Notice that Question 1 was extensively investigated by several au-
thors for a. topological structure and Question 2 was extensively inves-
tigated for a. measurable space struct ure (see, e.g., the article of Shortt  
[9] and references given in this article).

Let us remark also, in connection with the first, question, that in 
the most of interesting and important situations the answer to this  
quest ion is negative. In particular, one of such situations is described  
in the next simple example.

E x a m p l e  2 . Let us consider the type Ü of a structure of a measur-
able space with the additional axiom which says that all one-element  
subsets of a. basic set are measurable. This type of a structure can 
often be met in various domains of mathematics, especially in modern  
analysis and probability theory. Now, let E  be an infinite basic, set and 
let S  be a structure of the type S  on E.  Then it is not difficult to see 
that, for the pair ( E . S ), the answer to Question 1 is negative.

Another simple example of  such a situation can be obtained if we  
consider the type S  of a structure of a. complete graph defined on an 
infinite basic set.



Tims, we sec that it is more perspective to investigate Question 2 

concerning the existence of almost rigid (respectively, almost rigid in 
the strong sense) substructures induced by the original structure .S'. 
We want to notice, in connection with Question 2, that it is possible to 
establish some general conditions sufficient for the affirmative solution 
of the above-mentioned question (see, for instance, Proposition 1 be-
low). Notice also that those general conditions are formulated in terms  
of partial isomorphisms or in terms of partial monomorphisms of the  
given structure .S' (let us recall that e.g. a partial monomorphism is any  
injective homomorphism of t he form /  : ( V' S y  ) —* (E ,  .S'), where Y  is a 
subset of E  and S y  is t he st ruct ure on V induced by the original struc-
ture' ,S ). Actually, we can say that one' ol t hose sufficient conditions rep-
resents an abstract version of t he purely topological Lavrentiev’s the-
orem about extensions of Immeomorphisms of subsets of Polish spaces  
to homeomorphisms ol С/д-subsets of such spaces. This classical the-
orem with its various generalizations and applications is thoroughly  
considered in the well known monograph of Kuratowski [2].

In order to lormulate Proposition 1 we need a simple auxiliary no-
tion concerning partial homomorphisms. Namely, let

/  : ( Y , S y )  -> ( E , S ) ,  <j : ( Z , S 7j) -» ( E , S )

be any two partial homomorphisms. We shall say that the partial  
homomorphism j  majorâtes the partial homomorphism y  if f  is an 
extension of ц.

P r o p o s it i o n  1 . Let  .s' be a s truct ure  ou an infinite basic set E  and  
suppose that, ior each subset  D o f  E  wi th c<ird(D) = c nrd(E) ,  there  
exists  a  s tructure  S p  on D  induced by S . Suppose h Is o  that there exists  
a family  Ф ol partial  inonom orph isms  (acting from subsets o f  E  into  
E )  sat isfy ing the  following two conditions:

1) card (Ф) <  card(E );
2 ) for every partial  monom orph i sm  // : (Z.  S%) —* ( E . S ) .  there is 

a partial m onom orph is m  /' £  <|> such that f  majorâtes <j.
Then there exists a subset  Л of  E  sat isfy ing the  next t wo relations:
a) c a r d ( X )  =  c ard(E );
b) for an arbi trary m onom orph is m h : (A\.S'v) —* (Л. .S'v), the
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cardinal ity  o f  the  set.

{ . r e x  : h{x)  Ф .!•}

is stri ct ly  less than the cardinal ity o f  X .
Consequent ly , the  s tructure  S \  is almost  rigid in the  strong sense  

(in particular, this structure  is almost, rigid).

Proof.  Let O' be the least ordinal number of cardinality cnrd(E ).  
Obviously, we can represent the family Ф in the form

Ф =  { f t  : £ <  « } .

Let us remark that the identity transformation of E  belongs to the fam-
ily Ф and, without loss of generality, we may assume that Jo coincides  
with this transformation. Now, let us define, applying the method of  
translinite recursion, an injective family

{•'•f : £  <  ° }

of elements of the basic set E.  Suppose that fi <  or and a partial 
family : £ <  I } of elements of E  has already been defined. Let 
us consider two sets

л  =  Ш * с )  ■ t  < &  С <  ß} ,  

ß = U r ' ( * c )  : £ <  / i  C < ß } -

Evidently, we have I he inequalities

card[A  U B )  < 2(c ard (ß ) ) 2 < a i r d ( E ) .

(Consequently, the relation

E \ [ A l i  В )  ф

is true. Let хц be an element of the set E  \  [A  U B).
In such a way we are able to construct the required family {;rt- : £ <

o } of elements of E.  Now, let us put



Clearly, c ar d( X )  =  c ard(E ) .  From the assumptions of the proposition  
it follows that there exists a structure S. \  on A iminced by the original 
structure S .  Take an arbitrary monomorphism

h : (Л". ,S'.v ) —> (A", ,S',v ).

This monomorphism can be considered as a partial monomotphism

g  : ( X , S x ) ^ ( E , S ) .

According to condition 2). there exists a partial monomorphism f  G Ф 
such that J majorâtes g. Obviously, for some ordinal number £ <  cv, 
we have /  =  Taking into account the construction of the set X ,  it 
is not difficult to check that the inequality

c ard ({x  G A : /'(.• (x ) ф .r}) <  c ar d( X)

is fulfilled. We also can write

{.r G A" : /(-г)  ф  •<’} =  {;*• G X  : Н ( х ) ф , г } .

Hence, we obtain the inequality

<<ir<l({.v G A : h( x)  ф  ./ }) <  c a n l ( X ) ,

which shows us that, the structure S \  is almost rigid in the strong  
sense. 1 bus the prool ol Proposition I is complete.

Let ( E . S ) be again a sei equipped with a structure of the type H. 
We say that a mapping of the form

/  : ( Y \ $ y )  —> ( Z . $ z )

is a partial isomorphism (acting from ( E . S )  into ( E, . S')) if Y  and Z  
are some subsets of E. S y  and S z  are the structures on these subsets  
induced by .S’, and J is an isomorphism of the structure S y  onto the  
structure Sz-

The next proposition is analogous to Proposition 1.

P r o p o s i t i o n  2. Lrt  S  be a structure  on an infinite basic set E  
and  suppose that, for each subset D o f  E  with cnrd (D)  =  c nrd(E ).
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there  exists  a s tructure  S u  on D induced by S .  Suppose also that, 
there exists a family  Ф o f  partial i somorphisms (act ing from  ( E , S ) 
into ( E , S ) )  sat is fying the following two conditions:

1) cnrd{Ф) <  c ard(E );
2) for every  partial  i somorphism д acting from  ( E , S ) into ( E , S ), 

there is a partial i somorphism f  G Ф such tha t  / maj orâtes  д.
Then  there exists a subset  X  o f  E sat isfy ing the  following relations:
a) c u r d ( X)  =  card(E) ;
b) for an arbitrary isomorphism h : ( X , S x )  (A’, ,S.\') the  cardi-

nal i ty  o f  the  sei
{,• G A : h(.r) ф .,■}

is stri ct ly  less than the  cardinality o f  X .
In particular, the structure  S \  is almos t rigid.

Notice that the proof of Proposition 2 is quite similar to the proof  
of Proposition I.

Re mark  I. The result of Proposition I sometimes can be generalized  
to the case of partial morphisms which are not necessarily monomor-  
phisms. For instance, a direct analogue of Proposition 1 can be true for 
those partial morphisms which have small preimages (in the sense of 
cardinality) of the one-element subsets of a basic set E. More precisely, 
if the cardinality of the set E  is regular and all partial morphisms J G Ф 
satisfy the inequality

c a r d( f ~ ' ( x ) )  < c a r d (E ),

for each element x  G E.  then the analogue of Proposition 1 is true for 
such partial morphisms, too.

Re mark 2. The assumption that, for each subset D of E  with 
c ard(D)  =  c m i l( E ) .  there exists a structure S o  on D  induced by S  is 
rather essential in the formulation of Proposition 1. This can be shown 
by simple examples ol algebraic structures. Indeed, let us consider the 
set E  of all integers equipped with a natural group operation - addition 
of numbers. It is not difficult to check that in such a case there exists  
a family Ф of partial monomorphisms satisfying conditions 1) and 2 ) 
of Proposition 1. But there does not exist an infinite subgroup A' of



E  satisfying relations a.) and I)) of the same proposition. Moreover, in 
this rase all infinite subgroups of the group E  are isomorphic to E  and 
the group struct ure of E  is not an almost rigid structure in our sense.

R em ark  S. Let S' be a structure on an infinite basic, set E.  Suppose 
that, for every subset D  ol E,  there exists a structure S p  on D induced 
by S .  Suppose also that there is a family К  of subsets of E  sat isfying 
the following conditions:

1 ) card( A ) <  car<l( E):
2 ) for each set Z belonging to I\ , the cardinality of the family of 

all monomorphisms from Z into E  is less or equal to cavd(E )\
•'5) for any partial monomorphism

!l : V —> E  ( Y  С E)  

there exists a partial monomorphism

/  : Z  -* E  ( Z  С E)

such that, Z €  Л and / majorat.es //.
1 hen il is easy I o sec I hat I hero exists a family Ф ol part ial monomor-

phisms satisfying the assumptions of Proposition 1. ( Consequently, we 
can assert the existence ol a subset A of the basic set E  such that 
card( A ) =  c nr d( E)  and the structure ,S'y on A induced by S  is almost  
rigid in the st rong sense.

Let us notice that the family l\ mentioned above is, as usual, an in-
ner object for the given structure .S', i.e. an inner term for .S’, according  
to the terminology ol Bourbaki (see [ 1 ]). We want to notice also that  
condition ;5) may be considered as an abstract version of Lavrentiev’s 
theorem on extensions of lmmeomorphisms.

R em ark  Let E  be an infinite bąsic set. let S  be a structure on 
E  and let Ф be a family of partial morphisms from ( E , S )  into ( E , S ) 
satisfying the subsequent two conditions:

1) c ard(Ф) <  card(E):
2) for every partial morphism <j from ( E . S ) into ( E . S ), there is a 

partial morphism /  6  Ф such that f  ma.joral.es //.
riien there exists a mapping



h a v in g  th e  fo llo w in g p ro p erty: for every  set, A' Ç E  wi th c ar d( X )  =  

c ard(E ) ,  th e  restr iction  ol h to  A is not a m orp h ism  from  X  into  E.
1 he prool ol this lac) is analogous to the proof of Proposition 1. 

Indeed, applying the method ol transfinite recursion we can construct  
a mapping h : E  —> E  so that the inequality

card ({.r G E  : h(x)  =  /(.;•)}) <  c ard(E)

will be true lor each partial morphism f  G Ф.
Actually, this construction is due to Sierpiński. More precisely, 

Sierpiński applied t he construction presented above in a particular sit-
uation where 1  is the type of a topological structure and the class of  
morphisms is the class of all continuous mappings. The corresponding  
result (due to Sierpiński and Zygmund) is formulated as follows: there  
exists a function

h : R  -> R

such that its restriction to any subset A' of R  with c ar d( X )  =  card(R )  
is not a continuous mapping (here R  denotes the set of all real numbers 
equipped with the standard order topology).

Notice that an analogous result is also true if we take the class of  
all Borel mappings as a class of morphisms.

R em ark  -7. Let. E  be an infinite basic set, let ./ be an ideal ol subsets  
of E  and let S  be a structure on E.

We say t hat the structure .S' is ./-rigid if, for every automorphism

/  : ( £ , < . ' ) - ♦ ( £ , < ? )

of this structure onto itself, we have {.v G E  : f ( x )  ф :r} G J.
We say that the structure .s' is ./-rigid in the strong sense if, for 

every monomorphism

g : ( E , S ) - * ( E , S )

of this structure into itself, we have {;/■ G E  : g( x)  ф x }  G J.
Obviously, the concept of a ./-rigid structure and the concept of  a J-  

rigid structure in the strong sense are generalizations of the concepts of  
a rigid structure, an almost rigid structure and an almost rigid structure



in the strong sense. Also, it is easy to see that some generalizations of  
Propositions 1 and 2 ran be formulated and proved for ./-rigid (./-rigid  
in the strong sense) mathematical structures. Moreover, i f ./ satisfies  
some natural conditions, then a set X  can he taken so that X  ./.

Let us return to almost rigid structures and to Question 2 posed at  
the beginning of the paper. Namely, we wish to discuss here a natural  
application ol Propositions 1 and 2 to the situation where the type S  
coincides with the type ol a structure of a Dedekind complete linearly  
ordered set, with some addit ional properties. In t his situation we take  
the class ol all increasing mappings as a class ol morph isms for our 
type L. Hence, in this case the class ol all monomorphisms is the class
ol all strictly increasing mappings.

A detailed information on linearly ordered sets (and, in particular,  
on Dedekind complete linearly ordered sets) can be found in the well 
known monograph of Sierpiński [7].

First let us consider a sit uation where we do not have infinite sub-
structures almost rigid in the strong sense. Indeed, let, E be the type  
of a structure ol an infinite well ordered set. Obviously, ^ is simul-
taneously the type of a structure of an infinite, Dedekind complete,  
linearly ordered set. Let ( E . S )  he an arbitrary infinite set equipped  
with a structure of the type 1C. One can easily verify that there exists  
a monomorphism

/  : (£?, .S')-» (£? , .S')

such that the equality

c(inl({.r G E  : J ( x )  ф  .с}) =  c nrd(E)

is fulfilled. Similarly, for any infinite subset A' of E.  there exists a 
monomorphism

!l ■ (V..s'v) —► ( X , S \ )

such that
c ard ({x  G A : </(x) ф ./•}) =  m r d ( X ) .

Consequently, the structure .s'у induced on the set, A' is not almost  
rigid in the strong sense.



3ß Л . К 11A RA ZIS 11V ILI

However, we shall see below that some additional assumptions about  
the type £  of a. structure of an infinite, Dedekind complete, linearly  
ordered set, imply tlx-’ existence of an infinite substructure almost rigid 
in the strong sense.

Our further consideration needs two simple auxiliary assertions con-
cerning linearly ordered sets.

L e m m a  1 . Let  ( E , < )  be a Dedekind  comple te  dense linearly or-
dered set and  let X  be  a subset of  E dense in E  (i.e. every  no n e m p t y  
open subinterval  o f  E  intersects X  ). Then for each increasing mapp ing  
q : .V —> E  there exis ts an increasing mappi ng  <Г '■ E  —* E  ex tending  
y. Moreover, i f  the original mappi ng  </ is strict ly increasing, then the  
mappi ng  (j* is stric t ly  increasing, too.

This lemma is well known and its proof is not difficult. Actually,  
the required extension </* can be directly defined by the formula

</*(< ) — sup{y(.r)  : x  £  A' and  x  <  e},

where с is an arbitrary element of the basic set E.  taking into account  
the fact that (E ,  < )  is a. dense linearly ordered set, we see that if </ is 
a. strictly increasing mapping, then //* is a strictly increasing mapping,  
too. We also want to remark that, in general, //* is not the unique  
extension ol //.

L e m m a  2. Let (E ,  < )  be a Dedekind  complete  dense linearly or-
dered set. II' the  basic set E  contains at least two dist inct elements,  
then c nrd (E )  > c. where  с denotes the cardinality o f  the cont inuum.

This lemma is well known and can easily be proved by the standard 
method using a dyadic system of closed bounded subintervals of h .

Let (E .  <)  be an ordered set. We say that this set is isodyne if 
the cardinality of each nonempty open subinterval of E  is equal to the  
cardinality ol the basic set E.  In other words, ( E , < )  is isodyne il and 
only if the space E  is isodyne with respect to the order topology. For 
example, the real line R is an isodyne linearly ordered set.

Let us denote by the symbol M o n ( E ,  E)  the set of all strictly in-
creasing mappings from the ordered set E  into itself.



L e m m a  3. Is't. ( E , < )  be au infinite isodyne ordered set,  let  7  be 
the least ordinal num be r  corresponding to the  cardinali ty  o f  the  basic  
set  E  and let

M o n ( E , E)  = {(j0 : a  <  7 }.

Then  there exists a subset

Л =  {.r„ : tv <  7 }

o f  E  sat isfy ing the  following relations:
(1) the family  {./•,, : n <  7 ) is injective; in particular, c ur d ( X)  =  

card(E) ;
(2 ) A is dense everywhere in E;
(.'{) loi■ each ordinal  n <  -, and for any two ordinals /i <  rv, 0 <  o ,  

we have ,r0 ф ;Ц)(х0) and ,rn ф //J1 ( ).

I'roof. T h e  argument is very similar to the proof of Proposition 1. 
Namely, we shall construct, by the method of transfimte recursion, an 
injective 7  sequence of points

{.r„ : (У < 7 } (.r0 6  E).

For this purpose denote by { I ], : c\ <  7 } the family of all nonempty  
open subintervals of E  and let {</„ : о  <  7 } be the family of all 
monomorphisms from E  into E.  Of course, without loss of generality, 
we can assume that /д, is the identity transformation of the set E.  
Suppose now that, for an ordinal rv <  7 . the partial o -sequence {xp  : 
ß  < 0 } has already been constructed. Let us deline two sets:

/I =  {<l.i(x(i) : ji '< о.  0 < n }.

H =  {.'/,7 ' (•'•(?) : ß  < 0 . 0 <  n }.

Obviously, the cardinality of the set /I U H is strictly less than the 
cardinality ol the set E.  Since E  is isodyne, there exists an element x  
belonging to the set

V , \ ( A l > B ) .



Let us put x n — x.  Therefore, using the mot hod of transfmite réclusion, 
we are able to construct a certain 7 -sequence of elements ol E.  It is 
clear that this sequence is injective, and if we put

X  =  { x a : a  < 7 },

then it is not difficult to check that the set Л' is a required one. Slightly  
changing the above argument we can prove that the required set A 
satisfies also the following relation:

(4 ) c a r d (X  П V ) = c urd(E ) , for each nonempty open subinterval V
of E.

Of course, relation (4) is much stronger than relation (2). This ends 
the proot.

Now, we can formulate one ol many results dealing with the exis-
tence of almost rigid substructures ol t he original mathem atical struc-
ture. Here we restrict, our consideration to the theory of Dedekind 
com plete dense linearly olden'd sets. I he classical exam ple ol such 
a set is the real line R with its natural ordering. Another standard  
exam ple is the so called Suslin line (see Example 4 below).

P r o p o s it io n  3 . Let ( E. <) be an infinite' dense isodyne Dedekind  
com ple te  linearly ordered set and let

c n r d (M o n (E ,  E ))  < cu rd(E ) .

In ot her words, we can write

M o n ( E , E )  =  {и« : о <  7 },

where  7  is the  least ordinal num be r  corresponding to the  cardinality  
o f  the  basic set E. Let X  he a subset, o f  E sa tisfy ing relations (J),  (2) 
and (:i) o f  L em m a  3. T hen  the s truc ture  ( X , < )  is almost, rigid in the  
s trong sense.

Proof. Let <1 he any monomorphism from X  into A . By Lemma 1, 
there exists a monomorphism//* which acts from E  into E  and extends
4 . Taking into account the definition of the set A . we have

ctiril({x  6  A : fi*(x) ф .r}) <  card (A ).



Consequently, we ;ilso have

<•<//■</( {.r G .V : </(.r) ф .;■}) <  a i r d ( X ) ,

and tin* structure (Л , < )  is almost rigid in the strong sense.

E x a m p le  3. Let ns pul /? =  R  and let us take as <  the usual 
ordering of R . Then it is easy to see that Proposition 3 can directly be 
applied in this case. Hence, there exists an everywhere dense subset X  
of R  such that c a r d( X )  is equal to the cardinality of the continuum  
and every strictly increasing mapping, acting from X  into A , is al-
most identity transformation of Л . We can also assume that, for each  
nonempty open subinterval V  of R , the intersection X  П V  has the 
cardinality of the continuum. Moreover, we can even assume that A is 
a Bernstein subset of R  (for the definition of a Bernstein subset of the  
real line and for the properties of such subsets, see [2], [3], [4] or [5]).

We also can consider a more general situation. Namely, let к  be an 
infinite cardinal number such that, for every cardinal A <  к,  we have  
the inequality

2 a <

Then there are dense isodyne Dedekind com plete linearly ordered sets  
( E,  <)  satisfying the following conditions:

1 ) rard( E)  =  2":
2) E  contains a dense subset I) with card(D )  =  к.
For various exam ples of ( E . < )  with the above-mentioned proper-

ties, see e.g. the monograph of Sierpiński [7].
(Consequently, for such ( E,  < )  we have the inequality

c a r d { M o n ( E , E ) )  < ra rd (E ) .

Thus, we may apply directly Proposition 3 to { E . <) .  Applying this 
proposition we obtain that there exists a subset A’ of E  such that

a) c a r d( X )  =  c ard(E )\
b) A is dense everywhere in E\
c) X  is isodvne with respect to the induced order;
d) A  is almost rigid in the strong sense with respect to the induced  

order.



E x a m p le  4. Let us recall that a Siislin line is a nonempty Dedekind  
com plete dense linearly ordered set (/'J, < ) , without the first and the  
last elem ents, satisfying the Suslin condition (i.e. the countable chain  
condition which says that every disjoint family of nonempty open subin-
tervals of E  is at most countable) and nonseparable in its order topol-
ogy. It is well known that the existence of a Suslin line is consistent  
with the usual axiomatic set theory Z F C  and is not provable from 
this theory (see, for instance, [6]). Let us consider briefly the question  
about the cardinality of a Suslin line E. On one hand, by Lemma 2 , 
we have the inequality a i r d ( E )  >  c. On the other hand, we have the 
inequality citrd (E ) <  c. The latter fact can directly be deduced from 
each of the following two well known results:

1) the Erdńs-Rado theorem of the combinatorial set theory;
2 ) the Arhangelskii theorem about, the cardinality of a compact  

topological space satisfying the first countability axiom.
N otice also that, by a classical result of D.Kurepa, any Suslin line E  

contains an everywhere dense subset whose cardinality is equal to the  
first, uncountable cardinal number ш\ (the above-mentioned inequality 
card( E )  <  с follows immediately from this result). Thus, we conclude  
that the equality

c ard(E )  =  с

holds, and we can deduce that any Suslin line E  is an isodyne linearly 
ordered set.

Let us remark that R.Jensen showed, assuming the Axiom of Con-
struct ibility. the existence of a rigid Suslin line E  (the mentioned  
axiom with its various consequences and applications is discussed in 
detail, e.g., in [(>]). Furthermore, V.I.Fukson proved in [8 ] that if the 
Axiom of ( Construct ibility holds, then there exists a Suslin line E  such 
that, for any continuous mapping

/  : E  -> E .

at least one of the following two assertions is true:
a) J is a constant mapping;
b) J is the identity transformation of E.



Another interesting example (in Z F C ) ol‘ a Dedekind com plete  
dense isodyne linearly ordered set is the so called long line of Alexan-
drov. This line is a nonseparable one-dimensional connected manifold  
containing an everywhere dense subset of cardinality ш\.

E x a m p le  5. Let u> denote the first infinite cardinal number. It is 
obvious that if the Continuum Hypothesis holds, then we have

c _  -)ы <  2Ш[.

The Second Continuum H ypothesis is the following set-theoretical as-
sertion:

2W =  2U/| ( S C  If ) .

This assertion was considered, many years ago, by N .Luzin who also  
expected that it is consistent with the usual axioms of Set Theory, likely  
as the classical ( Continuum I lypothesis. Indeed, much later a number of  
models of Set Theory were constructed in which the Second Continuum  
Hypothesis holds (see. lor instance, [()]). In particular, there are models  
of Set Theory in which we have the following equalities:

Actually, il we start with an arbitrary countable transitive model of  
Z F C , satisfying the Generalized Continuum Hypothesis, and apply  
the Cohen lorcing to it, then we obtain a model of ZFC  in which the  
above-mentioned equalities are fulfilled (for details, see [(>]).

Assum e now that, the Second Continuum Hypothesis holds.
Let (E,  < )  be an arbitrary Dedekind com plete dense isodyne lin-

early ordered set containing an everywhere dense subset of cardinality  
uJ\. Then we have

cav d(E ) — 2Ш| =  2Ш =  с.

Also, it, is not difficult, to verify that

c u r , l (M ,m (E , E ))  <  2m =  2" =  c.

1 herefore, in this situation we can apply Proposition 3 again and we 
conclude that, in theory ( Z F C )  & ( $ C H ) ,  each linearly ordered set.



( E , < )  with the properties formulated above contains an everywhere  
dense subset Л' satisfying the following relations:

a) c a r d( X )  =  c ard(E )\
b) A’ is alm ost rigid in the strong sense (with respect to the induced  

order).
In addition, we see that the required subset X  of E  can be con-

structed so that, for an arbitrary nonem pty open subinterval V  of E ,  
we have the equality

c n r d (X  П V ) = r ard( E) .

Moreover, we can even assume that X  is a Bernstein type subset of E ,  
i.e.

c n r d ( X  П P )  =  c a r d { ( E  \ X ) f ) P )  =  c a r d ( E ) ,

for every nonem pty perfect subset P  of E.

E x a m p le  6 . The preceding example ran be generalized to some  
situations where we have a Dedekind com plete dense isodyne linearly  
ordered set [ E,  <)  with

c ard(E )  >  c.

More precisely, let к  and A be any two infinite cardinal numbers satis-
fying the equality

2Л = к.

Further, let (E ,  < )  lie a Dedekind com plete dense isodyne linearly or-
dered set satisfying the next two conditions:

1) i 'u rd (E )  =  Л"
2) E  contains a dense subset Г) with n ir d (D )  =  A.
Then there exists a dense subset .V of E  such that
a) r a r d ( X )  =  card(E);
b) A' is almost rigid in the strong sense (with respect to the induced  

order).
Moreover, we may assume that, for any nonem pty open subinterval 

V  of the set /v, the equality

c a rd (V  П A') =  c ard(E )

holds; in particular, A is an isodyne linearly Ordered set.
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AI < kxa ii (1er Kh a razish vili

O P R A W IE  S Z T Y W N Y C H  S T R U K T U R A C H  
M A T E M A T Y C Z N Y C H

YV pracy rozważa sir prawic sztywne struktury matem atyczne. 
Zostały zbadane pewne własności takich struktur.
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