A (GTA UNIVERSITATIS LODZIENSIS
 FOLIA MATHEMATICA 9, 1997

Maria Klosouska

MOMENTS OF PROBABILITY DISTRIBUTIONS SEMI-ATTRACTED TO SEMI-STABLE MEASURES ON HILBERT SPACES ${ }^{1}$

Let H be a real separable Ililbert space, q a non-degenerate semistable distribution on H and $\alpha \in(0,2]$ an exponent for q.
It is proved that the probability distributions semi-attracted to the measure q lave absolute moments of order β for $\beta \in(0, \alpha)$ and have no such moments for $\beta>\alpha$ and $\alpha \neq 2$.

Let H be a real separable Hilbert space with the norm $|\cdot|$. Consider the sums

$$
\begin{equation*}
\frac{X_{1}+X_{2}+\cdots X_{k_{n}}}{a_{n}}+x_{n} \tag{1}
\end{equation*}
$$

where X_{j} are independent H-valued random variables with a common distribution $p, a_{n}>0, x_{n} \in H$ and $\left\{k_{j}\right\}$ is an increasing sequence of positive integers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n+1} k_{n}^{-1}=r<+\infty . \tag{2}
\end{equation*}
$$

The distributions of sums (1) may be written in the form

$$
\begin{equation*}
T_{u_{n}^{-1}} 7^{k_{n}} * \delta_{x_{n}}, \tag{3}
\end{equation*}
$$

[^0]where the power p^{k} is taken in the sense of convolution, δ_{x} denotes the distribution concentrated at a point $x \in H$, and the measure $T_{a} p$ is defined by the formula
$$
T_{a} p(B)=p\{x \in H: a x \in B\},
$$
for all Borel subsets B of H.
A probability measure on H is said to be semi-stable if it is a weak limit of sequence (3). W.M. Kruglov gave in [4] a characterization of semi-stable measures. Namely, a measure on $/ /$ is semi-stable if and only if it is a Ganssian measure or an infinitely divisible purely Poissonian measure represented by a Livy-Khintchine spectral measure M such that
\[

$$
\begin{equation*}
T_{\lambda} M=\lambda^{\alpha} M, \tag{4}
\end{equation*}
$$

\]

for some $\alpha \in(0,2)$ and $\lambda \in(0,+\infty) \backslash\{1\}$.
The class of semi-stable measures is a subclass of infinitely divisible measures and is a natural extension of the class of stable measures. For this reason, in the sequel, the number α in (4) will be called an exponent for a purely Poissonian semi-stable measure (the exponent for a (Gaussian measures is equal to 2). Semi-stable measures have their domains of semi-attraction. Namely, by a domain of semi-attraction of a semi-stable measure q we mean a class of distributions p such that sequence (3) converges weakly to q for some $a_{n}>0, x_{n} \in H$ and $\left\{k_{n}\right\}$ satisfying (2). We shall also say that p is semi-attracted to q if p belongs to this class.

The theorems on moments of measures attracted to stable laws can be found in [1] and [5]. We shall prove an analogous theorem for distributions semi-attracted to semi-stable measures on H. Our proof is elementary in the case $r>1$ and. in the case $r=1$ (the stable case), we can apply the same method. Consequently, if we reduce the problem to measures attracted to stable laws on a straight line, then we obtain a proof simpler than the classical one.

Theorem. Let q be a non-degenerate semi-stable measure on H, and $\alpha \in(0,2]$ an exponent for q. If a distribution p on H is semiattracted to the measure q, then

$$
\int_{H}|x|^{\beta} p(d x)<+\infty, \quad \text { for } \quad \beta \in(0, \alpha)
$$

and

$$
\int_{H}|x|^{\beta} p(d x)=+\infty, \quad \text { for } \quad \beta>\alpha, \alpha \neq 2
$$

Proof. We shall consider several cases.
Case I. Let $\alpha \in(0,2)$. Thus the measure q is represented by a Lévy-Khintchine measure $M \not \equiv 0$. From the assumption we can find sequences $\left\{a_{n}\right\},\left\{x_{n}\right\},\left\{k_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{u_{n}^{-1}} p^{k_{n}} * \delta_{x_{n}}=q . \tag{5}
\end{equation*}
$$

Using Corollary in [2] and Lemma 7.1 in [6], we obtain the following: for any $\varepsilon>0$, the sequence of measures $\left\{k_{n} T_{u_{n}^{-1}} p\right\}$ restricted to the set

$$
\{x \in I I:|x|>\varepsilon\}
$$

is weakly convergent to the measure M restricted to the same set.
In particular, we have, for some $t>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n} p\left\{x \in H:|x|>t a_{n}\right\}=M\{x \in H:|x|>t\}>0 . \tag{6}
\end{equation*}
$$

Case IA. Let

$$
\lim _{n \rightarrow \infty} k_{n+1} k_{n}^{-1}=r>1
$$

Then

$$
\lim _{n \rightarrow \infty} a_{n} a_{n+1}^{-1}=a \in(0,1)
$$

and

$$
a^{\alpha} r=1
$$

(see [4]). Of course,

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

and, since $a<1$, we can assume that $\left\{a_{n}\right\}$ is an increasing sequence. By (6), putting $b_{n}=t a_{n}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p\left\{x \in H:|x|>b_{n+1}\right\}}{p\left\{x \in I I:|x|>b_{n}\right\}}=\lim _{n \rightarrow \infty} k_{n} k_{n+1}^{-1}=r^{-1} . \tag{7}
\end{equation*}
$$

Let us now consider a series of the form

$$
\sum_{n=1}^{\infty} b_{n}^{3} p\left\{x \in H:|x|>b_{n}\right\} .
$$

By (7) and d'Alembert's Criterion, we obtain the convergence of the series if $a^{-\beta} r^{-1}<1$, i.e, if $\beta \in(0, \alpha)$, and the divergence if $\beta>\alpha$. It now suffices to make use of the inequalities

$$
\begin{align*}
& \int_{|, x|>b_{1}}|x|^{\beta} p(d, x)=\sum_{n=1}^{\infty} \int_{b_{n}<|x| \leq b_{n+1}}|x|^{\beta} p(d x) \tag{8}\\
& \quad \leq \sum_{n=1}^{\infty}\left(\frac{b_{n+1}}{b_{n}}\right)^{\beta} b_{n}^{\beta} p\left\{x \in H:|x|>b_{n}\right\}
\end{align*}
$$

and
(9)

$$
\begin{gathered}
\quad \int_{|x|>b_{1}} p(d x) \\
\geq \sum_{n=1}^{\infty} b_{n}^{\beta} p\left\{x \in H:|x|>b_{n}\right\}\left(1-\frac{p\left\{x \in H:|x|>b_{n+1}\right\}}{p\left\{x \in H:|x|>b_{n}\right\}}\right) .
\end{gathered}
$$

Case IB. Let

$$
\lim _{n \rightarrow \infty} k_{n+1} k_{n}^{-1}=r=1
$$

Then

$$
\lim _{n \rightarrow \infty} a_{n} a_{n+1}^{-1}=a=1
$$

and q is a stable measure (see [4]). Consequently, the measure M has the property

$$
T_{\lambda} M=\lambda^{\alpha} M
$$

for each $\lambda>0$.
Thus, for all $t>0$, the set

$$
\{x \in H:|x|>t\}
$$

is a continuity set of M and condition (6) is satisfied for each $t>0$. This implies that

$$
\lim _{n \rightarrow \infty} \frac{p\left\{x \in H:|x|>t a_{n}\right\}}{p\left\{x \in H:|x|>a_{n}\right\}}=t^{-\alpha}
$$

for each $t>0$, and, since $a=1$, we obtain

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{p\{x \in H:|x|>t u\}}{p\{x \in H:|x|>u\}}=t^{-\alpha} \tag{10}
\end{equation*}
$$

for each $t>0$.
By putting $t=2$ and $u=2^{n}$ in (10), we have

$$
\lim _{n \rightarrow \infty} \frac{2^{\beta} p\left\{x \in H:|x|>2^{n+1}\right\}}{p\left\{x \in H:|x|>2^{n}\right\}}=2^{\beta-\alpha} .
$$

Thus, the series of the form

$$
\sum_{n=1}^{\infty}\left(2^{n}\right)^{\beta} p\left\{x \in H:|x|>2^{n}\right\}
$$

is convergent for $\beta \in(0, \alpha)$ and is divergent for $\beta>\alpha$. It now suffices to use inequalities (8) and (9) for $b_{n}=2^{n}$.

Case II. Let $\alpha=2$. In this case we can assume that

$$
\int_{H}|x|^{2} p(d x)=+\infty
$$

Now, q is a (Ganssian measure on H represented by a non-negative, self-adjoint operator S with a positive finite trace. Let $\left\{a_{n}\right\},\left\{x_{n}\right\}$, $\left\{k_{n}\right\}$ be sequences such that the condition of form (5) is satisfied. In the same way as in the proof of Theorem 3.2 in [3], condition (5) implies now

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n} a_{n}^{-2} \int_{|x|<t a_{n}}|x|^{2} p(d x)=\operatorname{tr} S>0 \tag{11}
\end{equation*}
$$

for each $t>0$.
Case IIA. Let $r>1$. Then $a \in(0,1)$ and $a^{2} r=1$ (see [4]). We have

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

and, since $a<1$, we can assume that $\left\{a_{n}\right\}$ is an increasing sequence. For $\beta \in(0,2)$, we have the following inequality:

$$
\begin{equation*}
\int_{|x| \geq a_{1}}|x|^{\beta} p(d x) \leq \sum_{n=1}^{\infty} a_{n}^{\beta-2} \int_{|x|<a_{n+1}}|x|^{2} p(d x) . \tag{12}
\end{equation*}
$$

By 1 sing (11) for $t=1$, we obtain

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n+1}^{\beta-2} \int_{|x|<a_{n+1}}|x|^{2} p(d x)}{a_{n}^{\beta-2} \int_{|x|<a_{n}}|x|^{2} p(d x)}=a^{-\beta} \lim _{n \rightarrow \infty} k_{n} k_{n+1}^{-1} \\
=a^{-\beta} r^{-1}<a^{-2} r^{-1}=1 .
\end{gathered}
$$

Thus the series in (12) is convergent and

$$
\int_{I I}|x|^{2} p(d x)<+\infty
$$

for $\beta \in(0,2)$.
Case IIB. Let $r=1$. Condition (11) implies that

$$
\lim _{n \rightarrow \infty} \frac{\int_{|x|<t n_{n}}|x|^{2} p(d x x)}{\int_{|x|<a_{n}}|x|^{2} p(d x)}=1
$$

for each $t>0$ and, since $a=1$, we further have

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{\int_{|x|<t u}|x|^{2} p(d x)}{\int_{|x|<u}|x|^{2} p(d x)}=1 \tag{13}
\end{equation*}
$$

for each $t>0$.
Putting $t=2$ and $u=2^{n}$ in (13), we obtain, for $\beta \in(0,2)$,

$$
\lim _{n \rightarrow \infty} \frac{2^{\beta-2} \int_{|x|<2^{n+1}}|x|^{2} p(d x)}{\int_{|x|<2^{n}}|x|^{2} p(d x)}=2^{\beta-2}<1 .
$$

The above inequality means that the series

$$
\sum_{n=1}^{\infty}\left(2^{n}\right)^{\beta-2} \int_{|x|<2^{n}}|x|^{2} p(d x)
$$

is convergent. It now suffices to make use of inequality (12) by putting $a_{n}=2^{n}$.

Our theorem implies the following
Corollary. Every semi-stable measure on H has exactly one exponent.

References

[1]. B.V.(inedenko, A.N. Kolnogorov, Limit Distributions for Sums of Independent Random Variables, Cambridge, 1954.
[2]. R.Jajte, On convergence of infinitely divisible distributions in a Hilberl space, Colloq. Math. 19 (1968), 327-332.
[3]. M.Klosowska, The domain of attraction of a normal distribution in a Hilbert space, Studia Math. 43 (1972), 195-208.
[4]. V.M.Kruglov, On a class of limit laws in a Hilbert space, Lit. Mat. Sb. 12 (1972), 85-88.
[5]. H.(i.Tucker, On moments of distribution functions attracted to stable laws, Houston J. Math. 1 (1975), 149-152.
[6]. S.R.S.Varadhan, Limit theorems for sums of independent random variables wilh values in " llitherl spare, Indian J. Stat. 24 (1962), 213-238.

Maria Klosowska

MOMENTY ROZKLADÓW PÓLPRZYCIA̧GANYCH PRZEZ MIARY PÓLSTABILNE W PRZESTRZENI HILBERTA

Niech H bẹdzie rzeczywistą, ośrodkową przestrzenią Hilberta, q niezdegenerowanym pólstabilnym rozkladem prawdopodobieństwa na H, a $\alpha \in(0,2]$ - wykladnikiem rozkladı q. W pracy udowodniono, że rozklad prawdopodobieństwa na H pólprzyciaggany przez q ma momenty absolutne rzȩdu β dla $\beta \in(0, \alpha)$ i nie ma takich momentów dla $\beta>\alpha$ i $\alpha \neq 2$.

[^0]: ${ }^{1}$ Supported by K.B.N.Girant nr 210209101

