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ON ESTIMATION OF A QUANTITY OF BASE MODELS 
WITH PARAMETRIC AND PERMUTATION TESTS 

 
Abstract. One of the crucial problems in multiple-model approach of the regression is 

estimation of optimal number of base models. If the quantity is too low – it increases the 
prediction error whereas too high number of models increases time and complication of 
calculations. Unfortunately, the estimation of the quantity of base models based on the analysis of 
prediction error can lead to its overestimation. This paper proposes a formal approach where the 
predictions obtained with the models aggregated from different number of base models are 
compared. In this approach both: parametric and permutation tests were applied with the empirical 
data from petroleum industry. 
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I. INTRODUCTION 
 
Parametric regression methods need to fulfill restricted assumptions. One of 

the solutions is using nonparametric methods, for instance multi-model 
approach. In this method, one of the most important factors is an optimal number 
of base models that gives small prediction error, reasonable time and complexity 
of the calculations. The methods of estimation of optimal number based on the 
analysis of prediction error can lead to an overestimation so alternative ways are 
proposed. The method proposed in this article bases on the analysis of prediction 
results. It is an adaptation of the formal method proposed by Latinne et al. 
(2002). That method was prepared for the classification purposes, the adaptation 
expands it into regression models. Additionally, different tests parametric and 
permutation are proposed what allows using this method also for the data with 
non-normal distribution. 

 
II. PROBLEM DESCRIPTION 

 
The aggregation of base models in parallel architecture means that the 

prediction results are a certain function of base models predictions (Garnar, 
2008, p. 63): 
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- prediction results of i-th base model. 

The prediction error of aggregate model (when aggregation is carried out as 
an average of prediction results) can be decomposed into: 
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where: 
O(X) - systematic effect (influence of a bias) 
N(X) - noise error (irreducible) 
S2(X) - variance effect (influence of a variance) 

In a majority of regression methods, aggregation decreases the prediction 
error if only systematic effect does not dominate and the base models vary as 
much as possible. In such case at least two crucial problems appear: a way of 
creating independent and diverse base models and an optimal number of these 
models. The lower number of base models increases prediction error, the higher 
does not guarantee smaller error, increases calculation time and – if base model 
quantity is really very big – could lead to over- learning of the final model. The 
first issue is solved by a great number of different ways that assure the diversity 
of base models like: 

 sampled learning dataset, 
 selection of predictors to base models, 
 change of dependent variable, 
 change of parameters of regression method, 
 different regression methods (Gatnar, 2008, pp. 103-106). 
The second issue: the inference basing only on the analysis of the prediction 

error can lead in practice to the overestimation (Gatnar, 2008, p. 80). Breiman 
(1996) said that more than 25 base models for regression purposes should give 
the same misclassification rate (Breiman, 1996, p. 135). Different number of 
base models (but in classification purposes) proposed Opitz and Maclin (1999) 
for neural networks and/or decision trees – plateau of an error was observed at 
10-15 base models (Opitz, Maclin, 1999, p. 182). However, no formal method 
that estimates the optimal number of base models in regression models was 
found in the literature. 
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III. PROPOSED METHOD 
 

Proposed method bases on the investigations described by Latinne et al. 
(2002). Original method was prepared for classification purposes. The idea bases 
on the difference between prediction results for multi-models with different 
number of base models. If there are two models with K and N number of base 
models (K < N) and Kmin is the smallest value for which the difference between 
results for both models is not significant – it means that Kmin is searched value. 
Latinne carried out McNemar test to verify the null hypothesis about the lack of 
differences between prediction results. In this case – for regression models, other 
tests, described below were used. The following sequence of actions is proposed: 

1. The aggregated model DK
* of K base models is created, where K=1, 2, 

3,…,50. 
2. The aggregated models DN

* of N base models are created, connected with 
each DS

*model, where N= K+1, K+2,…100. 
3. The prediction is calculated for DK

* and DN
*models. 

4. If there are statistically significant differences between the prediction 
results of DK

* and DN
*models – K value shall be increased. In the opposite case, 

K value is an optimal value. It means that a base of the decision is verifying of 
null hypothesis: there are no significant differences between prediction results of 
both models. 
 

IV. DATA DESCRIPTION 
 

The experiment was carried out for the dataset with dependent variable 
“Average month price of paraffin wax melt point 56-58C” [EUR/t] from the 
period Jan 2003 to Aug 2012, named WAX. This data is published by ICIS 
(International Chemical International Service): http://www.icisprising.com. Last 
four cases (May 2012 to Aug 2012) were cut from the dataset, for ex-post 
analysis purposes – calculations of prediction results. Predictors were chosen – 
according to authors experience as a representative of upstream variables and 
variables that represent downstream - exchange rates of the examples of 
companies that consume paraffin wax and industry waxes [USD]: 

 price of crude oil - Brent barrel [USD/barrel] – OIL, 
 Caterpillar – CAT, 
 Goodyear – GT, 
 Freeport-Mcmoran Copper&Gold – FCX, 
 United States Steel Co – X, 
additionally: 
 EURO to USD exchange rate – E2U, 
 lagged dependent variable – WAX.  
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All the predictors were lagged – according to maximum correlation with 
dependent variable. 

 
 

Table 1. Lag values of the predictors according to max correlation with dependent variable. 

Lag values of the predictors 

Predictor name OIL CAT GT FCX X E2U WAX 

Lag value 2, 3 2 6 3 3 5, 6 1, 2, 3 

 
 
It was decided to examine two different datasets to achieve diversity of base 

models. The first one includes the original period: Jan 2003 to Apr 2012, the 
second – a period after big fluctuations of the economic crisis of Jan 2009 to Apr 
2012. A graph of both cases is presented in Figure 1. 

 
 

 
First dataset: Jan 2003 – Apr 2012 Second dataset: Jan 2009 – Apr 2012 

Fig. 1. A graph of dependent variable for two datasets used in the experiment. 

 
 

V. BASE MODELS 
 
There were chosen a set of regression methods for creation base models 

purposes –recommended to achieve sufficient diversity and independence of the 
models: 

 projection pursuit regression (PPR), 
 neural network (multilayer perceptron MLP), 
 regression tree, 
 random forests. 
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Additionally, bagging (bootstrap aggregating) sampling was used to prepare 
data subset with: 30 and 50 cases. As a result, 240 base models were created for 
the experiment purposes and average of base model results was selected as the 
aggregation function. 

According to a sequence described in chapter III, prediction results of DK
* 

and DN
* models shall be tested in order to accept or reject null hypothesis. The 

first calculation gave a picture of problems: 
 a sample size is extremely low (4 cases – a period May 2013 to Aug 2013 

was taken into consideration), 
 although for around 80% of cases hypothesis about normal distribution 

was not rejected, low sample size tends to be cautious. 
Therefore, both parametric tests that need to comply with the assumption of 

normal distribution and permutation tests (do not have such requirements) were 
carried out. As a parametric test the well known t-Student test was chosen. Test 
F, verifying the difference between the variances did not give significant results. 
 
 

VI. PERMUTATION TEST DESCRIPTION 
 
The idea of permutation test was proposed by R. A. Fisher. This test does 

not require any knowledge of the distribution since, instead of using any 
theoretical distribution, ASL (Achieved Significance Level) is estimated from 
empirical permutation distribution. And the power of permutation test is similar 
to parametric test, see Good P. I. (1994). The test used in the investigations 
verifies the hypothesis H0: there are no differences between A and B populations, 
represented by the samples a and b. The sequence of actions is as follows: 

1. Calculate the value of test statistics T* for tested samples a and b: 
 

  
22

22
*

ba

ba

ss

ss

ba

ba
T








  (3) 

where: 

ba , - mean estimator from samples: a and b, 
22 , ba ss  - variance estimator from samples: a and b. 

2. Perform a permutation (M times, usually it is recommended to be 
M>1000)1 of dataset, it destroys existing dependencies of dataset. 

3. Calculate the value of tests statistics for these permutations Ti, where i=1, 
2,…,M. 
                                                           

1
 Hesterberg T. et al (2003), The practice of business statistics, Companion chapter 18 – 

Bootstrap methods and permutation tests, W. H. Freeman and Company, New York 2003, p. 45. 
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4. Locate calculated value of T* in Ti distribution and estimate p-value as 
ASL: 

  
 

M

TTTcard
ASL ii 


*:

 (4) 

 
5. If received ASL value is less than assumed value of α level (for one-sided 

rejected region), the null hypothesis cannot be rejected. 
 
 

VII. EXPERIMENT RESULTS 
 

The experiment was carried out with Monte Carlo sampling for two tests 
cases: 

 all the regression methods described in chapter V were used, 
 only regression tree and random forests methods were used.  
 
The results presented in Figure 2 allow estimating the optimal value as 25-

30 base models. And bigger number of base models does not improve the 
prediction. Additionally, the prediction results (aggregated model with 25 base 
models) compared with multiple regression model and real data are presented in 
Table 2 and Figure 3. 

 
 

 
First case: all the regression methods were used 

 
Second case: only regression tree and random forests method were used 

Fig. 2. The average percentage of null hypothesis rejection as a function of K parameter 
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Table 2. Prediction results of models compared with real data 

Prediction results 
Month real d. multiple r. aggregated 
May 1170 1184 1172 
Jun 1162 1169 1172 
Jul 1130 1143 1149 
Aug 1130 1086 1126 

 

 

 

 
Fig. 3. Prediction results of multiple regression models,  

aggregated model compared with real data 

 

 

VIII. CONCLUSIONS 
 

1. The proposed method estimates the optimal number of base models as 25 
models. Increasing this quantity has no impact on prediction error, it increases 
calculation time only. 

2. Both tests: parametric and permutation give similar values, however 
permutation test does not have any requirements about the distribution. 

3. Calculated results are similar to estimation proposed by Breiman (1996) 
and Opitz and Maclin (1999). The prediction of aggregated model with optimal 
number of base model is much closer to real data than calculated with multiple 
regression method. 
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O SZACOWANIU LICZBY MODELI BAZOWYCH ZA POMOCĄ TESTÓW 
PARAMETRYCZNYCH I PERMUTACYJNYCH 

 
Jednym z kluczowych problemów w wielomodelowym podejściu do zagadnienia regresji jest 

estymacja optymalnej ilości modeli bazowych. Jeśli ich ilość jest zbyt mała – rośnie błąd 
predykcji, zbyt duża ilość powiększa czas i komplikację obliczeń. Niestety estymacja tej ilości na 
podstawie analizy błędu predykcji może prowadzić do jej przeszacowania. 

W artykule proponuje się formalne podejście, w którym porównywane są wyniki prognoz 
otrzymanych z modeli zagregowanych z różnej liczby modeli bazowych. W tym przypadku 
wykorzystane zostały zarówno testy parametryczne jak i testy permutacyjne, a jako dane testowe: 
dane empiryczne wykorzystywane w przemyśle rafineryjnym. 


