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Abstract. Investigating relationship between risk of the Markowitz optimal portfolio and the 
strength of interdependence for the set of rates of return for portfolio components we state 
(Konarzewska, 2008, 2012) that the risk measured as variance/standard deviation is slightly 
sensitive on small disturbance in data set when the series of data are strongly interrelated. What 
more, portfolio risk rises as the strength of interdependence declines. We have found that if strong 
linear relationship is present among series, it is important to control the direction between the 
portfolio weights vector and the eigenvector corresponding to maximal eigenvalue of the 
correlation/covariance matrix – the ideal situation being orthogonality of the two vectors. These 
results can be utilized in: 

 the algorithm for pre-selection of investment portfolio components, 
 construction of the optimal investment portfolio models. 
Both propositions utilize eigenvalue decomposition of the rates of return correlation or 

covariance matrix. 
Theoretical results are illustrated by empirical examples for medium-sized firms being 

components of mWIG40 index on Stock Exchange in Warsaw. We compare optimal portfolios 
obtained for Markowitz and PCA – aided models. 

Key words: optimal portfolio models, principal component analysis of rates of return. 
 
 

I. INTRODUCTION 
 
Analyzing rates of return on stocks on Stock Exchange in Warsaw since  

16 April 1991, the day of the first session, we observe dynamic changes of 
number of firms, transactions, volume of sales, price trends etc. Investors try to 
allocate their funds optimally, which usually means that they look for such 
investment portfolios which give the maximal return with limited risk or to with 
minimal risk guarantee realization of satisfactory rate of return. Empirical 
research conducted since 1991 revealed existence of strong linear relationships 
among rates of return on stocks. We are interested in identification of such 
relationships, measurement and analysis of their consequences on the portfolio 
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investment results. Some insight into the problem of measuring the strength of 
relationships among series of rates of return on stocks and analysis of their 
influence on sensitivity of the optimal portfolios properties was done in 
Konarzewska (2008, 2012). In this paper we would like to present, besides some 
theoretical considerations, results of the empirical research for portfolios 
prepared with application of eigenvalue decomposition of correlation and 
covariance matrices for series of rates of return on stocks for medium-sized 
segment of firms on Stock Exchange in Warsaw observed in the period 2009-
2011.  

Let us introduce some formal notations: 
][ tjRR  j=1,…,N, t= 1,…,T, T≥N – the matrix of N time series of the 

rates of return on stocks,  

][ s
tjRsR – the standardized matrix of the rates of return, where 
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jR  – sample mean for j-th series, j = 1,…,N, 

j̂ – sample standard deviation for j-th series, j = 1,…,N, 
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P – the sample linear correlation matrix of the rates of return, 
 

  ss RRP T

T

1
  (2) 

 

We assume that N)ˆ( Σr and eigenvalues of Σ̂  being 

0... *
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1   . Using eigenvalue decomposition of Σ̂  we can present 

the sample covariance matrix as the product: 
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Using the result that  
 

  **T* VΣVΛ ˆ  (3a) 
 
we can present eigenvalues of the covariance matrix in the following way: 
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where ][ **
ill vv , i=1,…,N – eigenvector of Σ̂  corresponding to *

l . 

Eigenvalue decomposition of the rates of return sample correlation matrix 
results in the formulas  
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  TVVΛP  , (5a) 
 
where  N1,...,vvV   – the matrix of normalized eigenvectors related to 

eigenvalues of P ordered in descending series 0... N21   ; 

N
TT IVVVV  . 

Eigenvalues of the correlation matrix can be presented as functions of 
standardized data series and eigenvectors in the following way: 
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Exact linear relationships among rates of return resulting in zero-valued 

eigenvalues of Σ̂ or P are unlikely among data series. Very strong linear 
relationships can be identified using the measure known as matrix condition 
number – in case of quadratic symmetric matrices as covariance or correlation 
matrix it is defined as a ratio of the matrix maximal eigenvalue to the minimal one: 
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Taking into account that SPSΣ ˆ , where )ˆ(diag iS , i=1,…,N is a 

diagonal matrix with sample standard deviations of the rates of return on the 
main diagonal, the relationship between eigenvalues of the sample covariance 
matrix and sample correlation matrix is the following1: 
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where SVVD *T . 
 
 

II. PORTFOLIO OPTIMIZATION – SOME THEORETICAL RESULTS 
 
We consider the solution of the following optimization model: 
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where 

x = [xi], i=1,...,N; xi – weight (fraction of wealth invested) of i-th security in 
the portfolio, 

N – number of securities in the portfolio, 
2
P̂  – portfolio sample variance, 

r – minimal rate of return satisfactory for the investor. 
Portfolio sample variance can be formulated applying eigenvalue 

decomposition of sample covariance matrix as 
 

                                                            
1See Konarzewska (2012). 
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Similar to (10) representation can be obtained using eigenvalue 
decomposition of sample correlation matrix2: 
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Multivariate statistical analysis methods, like principal component analysis 
(PCA) are intensively applied nowadays in finance. Alexander (2008) presents 
such application to develop a statistical factor model for stock returns. We 
present here another application. Analyzing empirical data when strong linear 
relationships among rates of return on securities are present3 using (PCA) leads 
to the result that most of variability measured by portfolio variance can be 
expressed by a small number of components.  

The complete TxN matrix of principal components, denoted by Y is defined 
in the following way4: 

                                                            
2 It is worth mentioning here that conclusions drawn for PCA of covariance and correlation 

matrices are different. Krzyśko (2009) presents the illustrative example that only analysis of 
covariance matrix is correct because results for correlation matrices are not unique. Nevertheless, 
many statistical computer packages (Statistica, Statgraphics) conduct PCA for correlation matrices 
– standardized data.  

3 Relationship is usually considered as strong if the condition number for correlation matrix 
exceeds 30.  

4 Computer packages, f.e. Statistica, Statgraphics calculate principal components as columns 
of VRY s . 
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In our empirical study we modify the model (9) taking as an objective of 

minimization not the complete value of portfolio sample variance but only 
elements in the sum in (10) or (11) corresponding to limited number of principal 
components. We have found conducting former research on similar topics that 
when multicollinearity is present among series of data only the element 
corresponding to the first principal component was important to describe most 
portfolio variability – the structures of the optimal portfolios obtained for the 
model (9) and for the following model with the objective of minimizing the 
impact of the first principal component on portfolio variance were almost the 
same. 
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Our research is to check the properties of the optimal structures of portfolio 

weights for a set of q models defined in the following way: 
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where  N,1q  is an integer, which value will be suggested by PCA – number 

of principal components significant to explain total variance of the set of rates of 
return. 
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III. MULTIVARIATE STATISTICAL ANALYSIS OF RATES  
OF RETURN – EMPIRICAL STUDY FOR THE STOCK MARKET  

OF MEDIUM-SIZE FIRMS 
 
We analyzed weekly rates of return on stock in the period 2009-2011 years 

for 37 firms classified on Stock Exchange in Warsaw as medium-sized firms. 
The behavior of the firms stock prices is synthetically represented by the 
quotations of stock index mWIG40. Figure 1 illustrates the data series for 
mWIG40 index during the sample period – general rising tendency up to the half 
of the year 2011 when a big fall in prices was observed, then we observe 
stabilization of stock prices in this market segment the mean level lower than 
observed in the second half of the year 2009. 

 
 

 
Fig. 1. Index MWIG40 – weekly data for the period 2009-2011 

 
 
Figure 2 presents the relative profitability as a ratio of mean rate of return to 

risk, measured by standard deviation of rates of return, observed in sample 
period for individual securities as well as for the index mWIG40. 
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Fig. 2. Mean profit on medium-sized stock in the units of risk – weekly data 2009-2011 

 
 
We analyzed the properties of sample covariance and correlation matrices 

for the rates of return in three chosen periods: whole sample 2009-2011, 2-year 
period 2010-2011 and for the year 2011. Some results are included in tables 
Table 1 to 3 and on graphs Figure 3 to Figure 9. Condition numbers in Table 1 
were calculated using Excel5. It can be observed that condition number depends 
on the length of the sample period – less data available results in worse 
conditioning of the matrices. Condition numbers for the matrices of sample 
covariance were greater than for corresponding correlation matrices. 

 
 

Table 1. Conditioning of the empirical data in sample periods 

Condition number for the 
correlation matrix 

Sample period Condition number for 
the covariance matrix 

59,91 
2009-2011  

157 observations 
90,72 

92,54 
2010-2011 

106 observations 
183,79 

1415,40 
2011 

53 observations 
1980,00 

                                                            
5 For eigenvalues and eigenvectors calculation we used Excel Add-In: Matrix and Linear Algebra for 

Excel v.2.3.2 – SVD (Singular Value Decomposition) procedure, http://digilander.libero.it/foxes, author: 
Leonardo Volpi. 
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Fig. 3. Factorial scree for correlation matrices for the three sample periods 
 
 

 
Fig. 4. Factorial scree for covariance matrices for the three sample periods 

 

 
Figures 3 and 4 help us to make decision on how many principal 

components are important to describe the total data variability. The common 
criterion is to neglect eigenvalues lower than one – in case of correlation matrix 
analysis (called Kaiser criterion). In our analysis the number of eigenvalues 
greater than one for correlation matrices is 11 in all sample cases. Looking at 
Figure 4 prepared for covariance matrices, we also notice that 11 can also be the 
rational cut-off number. Another criterion to be used is to explain at least 75% of 
total variability of the set of rates of return. Graphs in Figures 5 and 6 present 
cumulative percentage of total variance explained for each case considered. 

 
 



Iwona Konarzewska 262

 

Fig. 5. Cumulative percentage of total variance explained – for correlation matrices 

 
 

 
Fig. 6. Cumulative percentage of total variance explained – for covariance matrices 

 
 
Comparing the concavity of lines in Figures 5 and 6 we conclude that: 
– with greater condition number we observe stronger concavity – it means 

that we need less principal components to explain the same amount of total 
variability of the rates of return; 

– lines in Figure 5 showing the relationship between number of principal 
components included and percentage of total variance explained based on 
covariance matrices are more concave than the corresponding lines in Figure 6 
prepared using principal component analysis for correlation matrices – it means 
that applying the criterion to explain at least 75% of total variance for covariance 
matrix results in a lower number of principal components needed than in the 
case of correlation matrix. 
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Fig. 7. First principal component and standardized rates of return on mWIG40 

 
 
Graph in Figure 7 shows first principal component calculated according to 

formula (12) and rates of return on mWIG40 in the analyzed sample period 
2009-2011. We can observe almost perfect consistency of peaks and dales of the 
two lines. 

The scatter plot in Figure 8 presents the securities on the map constructed by 
2 eigenvectors corresponding to the two greatest eigenvalues of the correlation 
matrix.  
 

 

Fig. 8. Eigenvectors corresponding to 2 greatest eigenvalues of correlation matrix  
for the sample period 2009-2011 
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Such maps can be used in classification of securities, taking into account 
their impact on total variability on the market. Securities with the smallest 
impact, taking into account 1 eigenvector, are as follows: EMP, CPS, ENA, 
CDR, CCI6. We expect them to be present as components of optimal portfolios. 

 
 

IV. OPTIMAL PORTFOLIOS BASED ON PCA  
– EMPIRICAL RESULTS 

 
The aim of our research was to check how optimal portfolio structures react 

to reduced dimension of data set, while strong relationships among rates of 
return are observed. The dimension suggested was 11 principal components out 
of 37 series of rates of return. We calculated 12 portfolios solving the problems 
defined in (9) and (14) after PCA based on correlation matrix (PCA-corr) and 12 
corresponding portfolios after PCA based on covariance matrix (PCA-cov). 

 
 

Table 2. Optimal portfolios structures – based on PCA for correlation matrix 
 
 Model 

Firm PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC37 

BDX 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 

CCC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8% 

CCI 0% 0% 29% 26% 0% 0% 0% 0% 0% 0% 0% 9% 

CDR 0% 0% 0% 0% 12% 0% 0% 0% 0% 0% 0% 1% 

CPS 0% 0% 0% 27% 36% 0% 0% 0% 0% 0% 0% 11% 

EAT 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 

EMP 100% 7% 3% 0% 0% 0% 0% 0% 4% 5% 10% 10% 

ENA 0% 93% 68% 34% 52% 20% 24% 23% 19% 15% 11% 12% 

EUR 0% 0% 0% 0% 0% 7% 3% 2% 3% 11% 11% 4% 

IPX 0% 0% 0% 0% 0% 0% 0% 2% 2% 1% 1% 1% 

KPX 0% 0% 0% 0% 0% 0% 4% 1% 0% 0% 0% 2% 

LPP 0% 0% 0% 0% 0% 45% 48% 51% 46% 39% 36% 14% 

NET 0% 0% 0% 13% 0% 21% 18% 19% 21% 23% 26% 11% 

PEP 0% 0% 0% 0% 0% 7% 3% 2% 5% 7% 5% 10% 

Source: own calculations. 

 
 

                                                            
6 All elements of the first eigenvector are negative. For the indicated securities we have 

noticed the smallest absolute value of the corresponding coordinates. 
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Let us summarize the results on components of the optimal portfolios. 
Optimal portfolio structure minimizing portfolio variance took into account 
shares of 15 firms. Optimal weights for shares if we consider only first principal 
component, resulted in non-diversified portfolio – only EMP shares. Portfolios 
obtained with the help of PCA based on covariance matrix, presented in Table 3, 
chose less types of shares than those based on correlation matrix: only EMP, 
CPS, CRM and CCI. Portfolios in Table 2 based on correlation matrix are very 
different although base on the same sample data.  

In the applied models we omitted constraint about required minimal rate of 
return. We can compare portfolios looking at estimated risk – Figure 9. The 
conclusion is that models based on PCA of correlation matrix produced, in general, 
lower risk. 

 
Table 3. Optimal portfolios structures – based on PCA for covariance matrix 

 
 Model 

Firm PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

CCI 0% 0% 0% 0% 0% 0% 22% 32% 50% 49% 52% 

CPS 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 5% 

CRM 0% 0% 0% 0% 5% 7% 5% 5% 3% 2% 2% 

EMP 100% 100% 100% 100% 95% 93% 73% 63% 47% 39% 41% 

Source: own calculations. 
 
 

 

Fig. 9. Risk of the optimal portfolios measured by standard deviation 
 

 
All vectors of optimal weights for portfolio models were almost orthogonal 

to eigenvectors corresponding to the first eigenvalue of correlation/covariance 
matrix – in case of models based on correlation matrix the angular distance was 
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in the range [0,9082 - 0,9970], in case of covariance matrix – in the range 
[0,9698 - 0,9993]. 
 
 

V. FINAL CONCLUSIONS 
 

The series of rates of return on stock are found to be highly multicollinear. 
We tried to investigate in what way and how strongly this fact influences the 
optimal investment portfolio structures. Principal component analysis was 
helpful to verify our hypothesis that in case of strong linear interdependence 
among rates of return we can reduce the dimension of data set without a big loss 
in the sense of risk extension. Our research was conducted on the base of 
correlation and covariance matrices. The results showed that sample correlation 
matrix compared with sample covariance matrix, both estimated on the same 
sample data, lose some amount of interdependence measured by condition 
number. It is mainly the consequence of data standardization. We have found 
that in the case of covariance matrix PCA suggests less sufficient number of 
principal components needed to explain total variance. Solving a set of 
optimization models, each of them including more principal components, we 
observed that more principal components forced, in general, more diversified 
solutions. This effect was much weaker for portfolios based on covariance 
matrix than for the ones obtained basing on correlation matrix. Portfolio risk 
measured by standard deviation was lower in cases utilizing PCA of correlation 
matrix than covariance for the same number of principal components. 
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Iwona Konarzewska 
 

OPTYMALNY PORTFEL AKCJI – 
ZASTOSOWANIE WIELOWYMIAROWEJ ANALIZY STATYSTYCZNEJ 

 
W artykule przedstawiamy wybrane wyniki teoretyczne na temat konstrukcji optymalnego 

portfela akcji z wykorzystaniem informacji dostepnej w wyniku przeprowadzenia analizy 
głównych składowych macierzy kowariancji czy też macierzy korelacji stóp zwrotu z akcji. 
Wyniki teoretyczne prowadzą do konstrukcji modeli optymalizacyjnych uwzględniajacych 
redukcję przestrzeni danych do określonej liczby głównych składowych, co udaje się skutecznie 
przeprowadzić w warunkach silnych związków o charakterze liniowym między szeregami stóp 
zwrotu z akcji. W pracy prezentujemy wyniki analiz dla modeli Markowitza oraz modeli opartych 
o analizę głównych składowych na przykładzie sektora średnich spółek na GPW w Warszawie w 
latach 2009-2011. Badanie empiryczne pokazuje różnice wyników optymalizacji oraz ryzyka 
portfeli w przypadkach, kiedy korzystamy z macierzy kowariancji albo korelacji. 


