Pokaż uproszczony rekord

dc.contributor.authorGriffith, Daniel A.en
dc.date.accessioned2015-04-28T11:46:06Z
dc.date.available2015-04-28T11:46:06Z
dc.date.issued2013-03-08en
dc.identifier.issn1508-2008
dc.identifier.urihttp://hdl.handle.net/11089/8310
dc.description.abstractGriffith and Paelinck (2011) present selected non-standard spatial statistics and spatial econometrics topics that address issues associated with spatial econometric methodology. This paper addresses the following challenges posed by spatial autocorrelation alluded to and/or derived from the spatial statistics topics of this book: the Gaussian random variable Jacobian term for massive datasets; topological features of georeferenced data; eigenvector spatial filtering-based georeferenced data generating mechanisms; and, interpreting random effects.en
dc.description.abstractArtykuł prezentuje wybrane, niestandardowe statystyki przestrzenne oraz zagadnienia ekonometrii przestrzennej. Rozważania teoretyczne koncentrują się na wyzwaniach wynikających z autokorelacji przestrzennej, nawiązując do pojęć Gaussowskiej zmiennej losowej, topologicznych cech danych georeferencyjnych, wektorów własnych, filtrów przestrzennych, georeferencyjnych mechanizmów generowania danych oraz interpretacji efektów losowych.en
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen
dc.relation.ispartofseriesComparative Economic Research;15en
dc.rightsThis content is open access.en
dc.titleSelected Challenges From Spatial Statistics For Spatial Econometriciansen
dc.page.number71-85en
dc.contributor.authorAffiliationUniversity of Texas at Dallasen
dc.identifier.eissn2082-6737
dc.referencesAnselin L. (1988), Spatial Econometrics, Kluwer, Dordrechten
dc.referencesBentkus V., Bloznelis M., Götze F. (1996), A Berry-Esséen bound for Student’s statistic in thenon-i.i.d. case, ‘J. of Theoretical Probability’, Springer, New York, 9en
dc.referencesBesag J. (1974), Spatial interaction and the statistical analysis of lattice systems, ‘J. of the Royal Statistical Society B’, Wiley, New York, 36en
dc.referencesChaidee N., Tuntapthai M. (2009), Berry-Esséen bounds for random sums of non-i.i.d. randomvariables, ‘International Mathematical Forum’, m-Hikari, Ruse, 4en
dc.referencesCliff\ A., Ord J. (1969), The Problem of Spatial Autocorrelation, [in:] A. Scott (ed.) LondonPapers in Regional Science, Pion, Londonen
dc.referencesCurry L. (1967), Quantitative geography, 1967, ‘The Canadian Geographer’, Wiley, New York, 11en
dc.referencesCvetković D., Rowlinson P. (1990), The largest eigenvalue of a graph: a survey, ‘Linear and Multilinear Algebra’, Taylor & Francis, Abingdon, 28en
dc.referencesGould P. (1967), On the geographical interpretation of eigenvalues, ‘Transactions, Institute of British Geographers’, Wiley, New York, 42en
dc.referencesGriffith D. (1992), Simplifying the normalizing factor in spatial autoregressions for irregularlattices, ‘Papers in Regional Science’, Wiley, New York, 71en
dc.referencesGriffith D. (2004a), Extreme eigenfunctions of adjacency matrices for planar graphs employed inspatial analyses, ‘Linear Algebra & Its Applications’, Elsevier, Amsterdam, 388en
dc.referencesGriffith G. (2004b), Faster maximum likelihood estimation of very large spatial autoregressivemodels: an extension of the Smirnov-Anselin result, ‘J. of Statistical Computation and Simulation’, Taylor & Francis, Abingdon, 74en
dc.referencesGriffith D. (2011a), Positive spatial autocorrelation, mixture distributions, and geospatial datahistograms, [in:] Y. Leung, B. Lees, C. Chen, C. Zhou, and D. Guo (eds.), ‘Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM 2011)’ , IEEE, Beijingen
dc.referencesGriffith D. (2011b), Positive spatial autocorrelation impacts on attribute variable frequencydistributions, ‘Chilean J. of Statistics’, Sociedad Chilena de Estadística, Valparaiso, 2 (2)en
dc.referencesGriffith D., Paelinck J. (2011), Non-standard Spatial Statistics and Spatial Econometrics, Springer-Verlag, Berlinen
dc.referencesMaćkiewic, A., Ratajczak W. (1996), Towards a new definition of topological accessibility, ‘Transportation Research B’, Elsevier, Amsterdam, 30en
dc.referencesMass C. (1985), Computing and interpreting the adjacency spectrum of traffic networks, ‘Journal of Computational and Applied Mathematics’, Elsevier, Amsterdam, 12&13en
dc.referencesOrd J. (1975), Estimation methods for models of spatial interactions, ‘Journal of the American Statistical Association’, Taylor & Francis, Abingdon, 70en
dc.referencesPace R., LeSage J. (2004), Chebyshev approximation of log-determinants of spatial weightmatrices, ‘Computational Statistics and Data Analysis’, Elsevier, Amsterdam, 45en
dc.referencesPaelinck J. (2012), Some challenges for spatial econometricians, paper presented at the 2nd International Scientific Conference about Spatial Econometrics and Regional Economic Analys is, University of Lodz, Polanden
dc.referencesPaelinck J., and Klaassen L. (1979), Spatial Econometrics, Saxon House, Farnboroughen
dc.referencesSmirnov O., Anselin L. (2001), Fast maximum likelihood estimation of very large spatialautoregressive models: a characteristic polynomial approach, ‘Computational Statistics and Data Analysis’, Elsevier, Amsterdam,, 35en
dc.referencesSmirnov O., Anselin L. (2009), An O(N) parallel method of computing the log-Jacobian of thevariable transformation for models with spatial interaction on a lattice, ‘Computational Statistics and Data Analysis’, Elsevier, Amsterdam, 53en
dc.referencesWalde J., Larch M., Tappeiner G. (2008), Performance contest between MLE and GMM for hugespatial autoregressive models, ‘J. of Statistical Computation and Simulation’, Taylor & Francis, Abingdon, 78 ThomsonISI: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000253266000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3en
dc.referencesZhang Y., Leithead W. (2007), Approximate implementation of the logarithm of the matrixdeterminant in Gaussian process regression, ‘J. of Statistical Computation and Simulation’, Taylor & Francis, Abingdon, 77en
dc.identifier.doi10.2478/v10103-012-0027-5en


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord