Search
Now showing items 1-8 of 8
Euclidean algorithm and polynomial equations after Labatie
(Wydawnictwo Uniwersytetu Łódzkiego, 2013)
We recall Labatie's effective method of solving polynomial equations
with two unknowns by using the Euclidean algorithm.
Bézout’s inequality for real polynomials
(Łódź University Press, 2017)
Let F(X, Y ), G(X, Y ) be polynomials of degrees m, n > 0 respectively. We prove, that the set {(x, y) Є R² : F(x, y) = G(x, y) = 0} has at most mn connected components.
Formal and convergent solutions of analytic equations
(Łódź University Press, 2017)
We provide the detailed proof of a sharpened version of the
M. Artin Approximation Theorem.
Contact exponent and the Milnor number of plane curve singularities
(Wydawnictwo Uniwersytetu Łódzkiego, 2019)
We investigate properties of the contact exponent (in the sense of Hironaka [Hi]) of plane algebroid curve singularities over algebraically closed fields of arbitrary characteristic. We prove that the contact exponent is ...
Introduction to the local theory of plane algebraic curves
(Wydawnictwo Uniwersytetu Łódzkiego, 2013)
We consider the algebroid plane curves de ned by formal power
series of two variables with coe cients in an algebraically closed eld. Using
quadratic transformations we prove the local normalization theorem. Then we
study ...
Materiały na XXXVII Konferencję i warsztaty z geometrii analitycznej i algebraicznej
(Wydawnictwo Uniwersytetu Łódzkiego, 2016)
On Lê’s formula in arbitrary characteristic
(Wydawnictwo Uniwersytetu Łódzkiego, 2022)
In this note we extend, to arbitrary characteristic, Lˆe’s formula
(Calculation of Milnor number of isolated singularity of complete intersection.
Funct. Anal. Appl. 8 (1974), 127–131).
Lectures on polynomial equations: Max Noether’s Fundamental Theorem, The Jacobi Formula and Bézout’s Theorem
(Wydawnictwo Uniwersytetu Łódzkiego, 2022)
Using some commutative algebra we prove Max Noether’s
Theorem, the Jacobi Formula and B´ezout’s Theorem for systems of polynomial
equations defining transversal hypersurfaces without common points
at infinity.