Search
Now showing items 1-7 of 7
Zariski multiplicity conjecture in families of non-degenerate singularities
(Wydawnictwo Uniwersytetu Łódzkiego, 2022)
Podajemy nowy, elementarny dowód hipotezy o krotności Zariskiego
w μ-constant rodzinach niezdegenerowanych osobliwości.
Materiały na XXXVII Konferencję i warsztaty z geometrii analitycznej i algebraicznej
(Wydawnictwo Uniwersytetu Łódzkiego, 2016)
The Łojasiewicz exponent via the valuative Hamburger-Noether process
(Łódź University Press, 2017)
Let k be an algebraically closed field of any characteristic. We apply the Hamburger-Noether process of successive quadratic transformations to show the equivalence of two definitions of the Łojasiewicz exponent £ (a) of ...
A short proof that equisingular plane curve singularities are topologically equivalent
(Łódź University Press, 2017)
We prove that if two plane curve singularities are equisingular, then they are topologically equivalent. The method we will use is P. Fortuny Ayuso’s who proved this result for irreducible plane curve singularities.
A note on the Łojasiewicz exponent of non-degenerate isolated hypersurface singularities
(Wydawnictwo Uniwersytetu Łódzkiego, 2019)
We prove that in order to find the value of the Łojasiewicz exponent ł(f) of a Kouchnirenko non-degenerate holomorphic function f : (Cn; 0) → (C; 0) with an isolated singular point at the origin, it is enough to find this ...
Necessary conditions for irreducibility of algebroid plane curves
(Wydawnictwo Uniwersytetu Łódzkiego, 2013)
Let K be an algebraically closed field of characteristic 0 and let
ƒ ϵ K[[X]] [Y] be monic. Using the properties of approximate roots given in
[J. Algebra 343 (2011), pp. 143-159] we propose some necessary conditions
for ...
The Łojasiewicz exponent over a field of arbitrary characteristic
(Springer Verlag, 2015-01-13)
Let K be an algebraically closed field and let K((XQ)) denote the field
of generalized series with coefficients in K. We propose definitions of the local
Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as ...