Pokaż uproszczony rekord

dc.contributor.authorŻądło, Tomasz
dc.date.accessioned2012-05-29T10:22:15Z
dc.date.available2012-05-29T10:22:15Z
dc.date.issued2011
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/638
dc.description.abstractThe problem of modeling longitudinal profiles is considered assuming that the population and elements affiliation to subpopulation may change in time. The considerations are based on a model with auxiliary variables for longitudinal data with subject specific (in this case - element and subpopulation specific) random components (compare Verbeke, Molenberghs, 2000; Hedeker, Gibbons, 2006) which is a special case of the General Linear Mixed Model. In the paper calibration estimators of subpopulation total for data from one period are presented and some modifications for the case of longitudinal data are proposed. Design-based mean squared errors and its estimators are also presented. In the simulation study accuracy of the estimators is compared with Horvitz-Thomson estimator and the best empirical linear unbiased predictor derived for the considered model.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis, Folia Oeconomica;
dc.subjectlongitudinal datapl_PL
dc.subjectgeneral linear mixed modelpl_PL
dc.subjectempirical best linear unbiased predictorpl_PL
dc.subjectcalibration estimatorspl_PL
dc.titleOn some calibration estimators of subpopulation total for longitudinal datapl_PL
dc.typeArticlepl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord