Pokaż uproszczony rekord

dc.contributor.authorZawadzka, Katarzyna
dc.contributor.authorKądzioła, K.
dc.contributor.authorFelczak, A.
dc.contributor.authorWrońska, Natalia
dc.contributor.authorPiwoński, Ireneusz
dc.contributor.authorKisielewska, Aneta
dc.contributor.authorLisowska, K.
dc.date.accessioned2014-12-30T16:20:39Z
dc.date.available2014-12-30T16:20:39Z
dc.date.issued2014
dc.identifier.issn1369-9261
dc.identifier.urihttp://hdl.handle.net/11089/6010
dc.description.abstractTitanium dioxide coatings were prepared on Si wafers using the sol–gel method. Four different types of coatings with silver nanoparticles (AgNPs) were synthesized. The diameter and surface density of AgNPs were conditioned by the concentration of Ag+ ions in the initial solution, time and UV illumination source. The bactericidal activity of AgNPs on the titanium dioxide coatings against the S. aureus strain were calculated as the percentage of the inhibition of bacterial growth after 24 hour incubation of microorganisms at 37°C on TiO₂ coatings with AgNPs. Control samples were coated with titanium dioxide without AgNPs. We concluded that the titanium dioxide coatings modified with silver nanoparticles had a high antibacterial activity. Moreover, we demonstrated strong dependence between surface areas of AgNPs and inhibition of bacterial growth. The obtained results evidence that the surface area of AgNPs grown on titanium dioxide coatings is a major factor determining their antimicrobial potential.pl_PL
dc.language.isoenpl_PL
dc.publisherThe Royal Society of Chemistrypl_PL
dc.relation.ispartofseriesNew Journal of Chemistry;2014, Nr 38
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleSurface area or diameter – which factor really determines the antibacterial activity of silver nanoparticles grown on TiO₂ coatings?pl_PL
dc.typeArticlepl_PL
dc.page.number3275--3281pl_PL
dc.contributor.authorAffiliationUniversity of Lodzpl_PL
dc.referencesM. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 2009, 27, 76pl_PL
dc.referencesG. A. Sotiriou and S. E. Pratsinis, Environ. Sci. Technol., 2010, 44, 5649pl_PL
dc.referencesB. Nowack, H. F. Krug and M. Height, Environ. Sci. Technol., 2011, 45, 1177pl_PL
dc.referencesC. Marambio-Jones and E. M. V. Hoek, J. Nanopart. Res., 2010, 12, 1531pl_PL
dc.referencesB. Yu, K. M. Leung, Q. Guo, W. M. Lau and J. Yang, Nanotechnology, 2011, 22, 1pl_PL
dc.referencesD. Wodka, E. Bielańska, R. P. Socha, M. Elżbieciak-Wodka, J. Gurgul, P. Nowak, P. Warszyński and I. Kumakiri, ACS Appl. Mater. Interfaces, 2010, 2, 1945pl_PL
dc.referencesA. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril and L. Kvıtek, Biomaterials, 2009, 30, 6333pl_PL
dc.referencesZ. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin and P. J. Alvarez, Nano Lett., 2012, 12, 4271pl_PL
dc.referencesQ. Zhang, C. Sun, Y. Zhao, S. Zhou, X. Hu and A. Chen, Environ. Sci. Technol., 2010, 44, 8270pl_PL
dc.referencesH. Zhang and G. Chen, Environ. Sci. Technol., 2009, 43, 2905pl_PL
dc.referencesF. Martinez-Gutierrez, P. L. Olive, A. Banuelos, E. Orrantia, N. Nino, E. Morales Sanchez, F. Ruiz, H. Bach and Y. Av-Gay, Nanomedicine, 2010, 6, 681pl_PL
dc.referencesR. Bryaskova, D. Pencheva, S. Nikolov and T. Kantardjiev, J. Chem. Biol., 2011, 4, 185pl_PL
dc.referencesH. J. Jeon, S. C. Yi and S. G. Oh, Biomaterials, 2003, 24, 4921pl_PL
dc.referencesT. Yuranova, A. G. Rincon, C. Pulgarin, D. Laub, N. Xantopoulos, H.-J. Mathieu and J. Kiwi, J. Photochem. Photobiol., A, 2006, 181, 363pl_PL
dc.referencesI. Piwoński, K. Kądzioła, A. Kisielewska, K. Soliwoda, M. Wolszczak, K. Lisowska, N. Wrońska and A. Felczak, Appl. Surf. Sci., 2011, 257, 7076pl_PL
dc.referencesY. Liu, X. Wang, F. Yang and X. Yang, Microporous Mesoporous Mater., 2008, 114, 431pl_PL
dc.referencesA. Panacek, L. Kvıtek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna´ and R. Zboril, J. Phys. Chem. B, 2006, 110, 16248pl_PL
dc.referencesJ. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, Nanotechnology, 2005, 16, 2346pl_PL
dc.referencesZ. Lu, K. Rong, J. Li, H. Yang and R. Chen, J. Mater. Sci.: Mater. Med., 2013, 24, 1465pl_PL
dc.referencesC. R. Bowman, F. C. Bailey, M. Elrod-Erickson, A. M. Neigh and R. R. Otter, Environ. Toxicol. Chem., 2012, 31, 1793pl_PL
dc.referencesO. Akhavan, J. Colloid Interface Sci., 2009, 336, 117pl_PL
dc.referencesN. Perkas, A. Lipovsky, G. Amirian, Y. Nitzan and A. Gedanken, J. Mater. Chem. B, 2013, 1, 5309pl_PL
dc.referencesH. Strauber and S. Muller, Cytometry, Part A, 2010, 77A, 623pl_PL
dc.referencesZ. Shi, K. G. Neoh, E. T. Kang and W. Wang, Biomaterials, 2006, 11, 2440pl_PL
dc.referencesY. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma and X. Jiang, J. Am. Chem. Soc., 2010, 132, 12349pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska