Show simple item record

dc.contributor.authorSerwach, Karolina
dc.contributor.authorZiułkiewicz, Maciej
dc.date.accessioned2025-11-28T12:44:37Z
dc.date.available2025-11-28T12:44:37Z
dc.date.issued2025-08-26
dc.identifier.issn1427-9711
dc.identifier.urihttp://hdl.handle.net/11089/56795
dc.description.abstractMicroplastic (MP) are currently one of the most serious and emerging environmental problems that involve rivers and streams with particular clarity. In the present study of the spring-fed watercourse bed sediments, the presence of microplastic particles was demonstrated and the pathway of their penetration into this environment was identified. The presence of microplastic in the form of fine plastic particles, taking the shape of fibres and fragments in dark and light colours within the hyporheic zone was found. This occurs directly beneath the lowland watercourses with sandy bottoms. There, groundwater is in contact with surface water and mixing takes place. This is an important ecological zone, where chemical and physical processes are crucial to the river environment. In the hyporheic zone there is an exchange of nutrients and oxygen between river water and groundwater, which is crucial to the ecological health of the river and its surroundings. This zone can play an important role in the processes of microplastic transport and retention, as it is where microplastic is washed into the channel infiltration (downwelling) zones and sediment is deposited on the sand filter penetrated by the mixture of river water and groundwater.en
dc.description.abstractMikroplastik (MP) jest obecnie jednym z najpoważniejszych i nowych problemów środowiskowych, który obejmuje ze szczególną wyrazistością rzeki i strumienie. W niniejszej pracy, dotyczącej badań osadów dennych cieku źródliskowego, wykazano obecność mikrocząstek tworzyw sztucznych oraz wskazano drogę ich przenikania do tego środowiska. Stwierdzono obecność mikroplastiku w postaci drobnych cząstek tworzyw sztucznych, przybierających kształt włókien i fragmentów w ciemnych i jasnych barwach w obrębie strefy hyporeicznej. Występuje ona bezpośrednio pod ciekami nizinnymi o piaszczystym dnie. Woda podziemna ma tam kontakt z wodą powierzchniową i dochodzi do ich mieszania. Jest to ważna strefa ekologiczna, gdzie procesy chemiczne i fizyczne mają kluczowe znaczenie dla środowiska rzecznego. W strefie hyporeicznej zachodzi wymiana substancji odżywczych i tlenu pomiędzy wodą rzeczną a podziemną, która jest kluczowa dla zachowania dobrej kondycji ekologicznej cieku i jego otoczenia. Strefa ta może odgrywać istotną rolę w procesach transportu mikroplastiku i jego retencji, gdyż dochodzi tam do wmywania mikroplastiku w strefach infiltracji korytowej (downwelling) i osadzania na filtrze piaszczystym osadów penetrowanych przez mieszaninę wód rzecznych z podziemnymi.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Geographica Physica;24pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectMicroplasticen
dc.subjectriverbed sedimentsen
dc.subjecthyporheic zoneen
dc.subjectvertical hydraulic gradienten
dc.subjectMikroplastikpl
dc.subjectosady dennepl
dc.subjectstrefa hyporeicznapl
dc.subjectpionowy gradient hydraulicznypl
dc.titleBottom sediments of a spring watercourse as a filter for microplastic – on the example of the Młynówka in Stary Imielnik (municipality of Stryków) – preliminary studiesen
dc.title.alternativeOsady denne cieku źródliskowego jako filtr dla mikroplastiku – na przykładzie Młynówki w Starym Imielniku (gmina Stryków) – badania wstępnepl
dc.typeArticle
dc.page.number7-16
dc.identifier.eissn2353-6063
dc.referencesBattin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P. 2003. A mixing model analysis of stream solute dynamics and the contribution of hyporheic zone to ecosystem function. Freshwater Biology 48: 995–1014.en
dc.referencesBüks F., Kaupenjohann M. 2020. Global concentrations of microplastics in soils – a review. Soil 6: 649–662.en
dc.referencesCarpenter E., Smith K. 1972. Plastics on the Sargasso Sea Surface. Science 175 (4027): 1240–1241.en
dc.referencesDalvand M., Hamidian A.H. 2023. Occurrence and distribution of microplastics in wetlands. Science of the Total Environment 862.en
dc.referencesEmmerik T., Kieu-Le T.C., Loozen M., Oeveren K., Strady E., Bui X.T., Egger M., Gasperi J., Laberton L., Ngu-yen P.D., Schwarz A., Slat B., Tassin B. 2018. A Methodology to Characterize Riverine Macroplastic Emission Into the Ocean. Frontiers in Marine Science 5.en
dc.referencesFischer H., Kloep F., Wilzcek S., Pusch M.T. 2005. A river’s liver-microbial processes within the hyporheic zone of a large low-land river. Biogeochemistry 76: 349–371.en
dc.referencesGhinassi M., Michielotto A., Uguagliati F., Zattin M. 2023. Mechanisms of microplastics trapping in river sediments: Insights from the Arno river (Tuscany, Italy). Science of The Total Environment 866: 161273.en
dc.referencesGooseff M.N. 2010. Defining Hyporheic Zones – Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geography Compass 4 (4): 945–955.en
dc.referencesGrulke R. 2022. Wymiana wód powierzchniowych i podziemnych w korycie północnego ramienia Strugi Dobieszkowskiej [Praca magisterska, Uniwersytet Łódzki]. Archiwum Prac Dyplomowych Uniwersytetu Łódzkiego.en
dc.referencesGrulke R., Górowski J., Markowicz P., Ziułkiewicz M. 2025. Hydrochemical aspects of river and groundwater exchange in the bed of a spring stream in the suburban area of the Łódź agglomeration (in preparation – in review).en
dc.referencesHorton A., Svendsen C., Williams R., Spurgeon D., Lahive E. 2016. Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin.en
dc.referencesJermołowicz P. 2019. Problematyka zagęszczania i stabilizacji gruntów w budownictwie. Technologie i ich skuteczność. Zasady projektowania i wykonawstwa (materiały szkoleniowe). Opole.en
dc.referencesJokiel P., Moniewski P., Ziułkiewicz M. (Ed.) 2007. Źródła Polski – wybrane problemy krenologiczne. Łódź: Regina Poloniae, Częstochowa.en
dc.referencesJokiel P., Tomalski P. 2005. Odpływ oraz fizykochemiczne właściwości wód płynących w sąsiedztwie węzła autostrad A1 i A2 w okolicy Łodzi. Acta Scientiarum Polonorum. Formatio Circumiectus 4 (2): 3–20.en
dc.referencesKlimaszewski M. 1981. Geomorfologia. PWN, Warszawa.en
dc.referencesLewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C. Drummond J.D., Garcia J.G., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Hӧhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Lӧchner Prats A., Magliozzi C., Meinikmann K., Mojarrad B.B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putchew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanefield M., Singh T., Ward A.S., Wolke P., Wӧrman A., Wu L. 2019. Is the Hyporheic Zone Relevant beyond the Scientific Community? Water 11: 2230.en
dc.referencesLing X., Yan Z., Lu G. 2022. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. Water Research 219.en
dc.referencesLiu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. 2018.Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242 (Pt A): 855–862.en
dc.referencesLwanga E.H., Mendoza J.V., Ku Quej W., de los Angeles Chi J., del Cid L.S., Chi C., Segura G.E., Gertsen H., Salánki T., van der Ploeg M., Koelmans B., Geissen V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7 (1): 14071.en
dc.referencesMacioszczyk A., Dobrzyński D. 2002. Hydrogeochemia strefy aktywnej wymiany wód Podziemnych. Wydawnictwo Naukowe PWN, Warszawa.en
dc.referencesMajer E., Roguski A., Grabowska A., Łukawska A. 2021. Oznaczanie, opis i klasyfikacja gruntów według norm PN-EN ISO 14688-1 oraz 14688-2. Przegląd Geologiczny 69 (12): 937–948.en
dc.referencesMancini M., Francalanci S., Innocenti L., Solari L. 2023. Investigations on microplastic infiltration within natural riverbed sediments. Science of the Total Environment 904: 167256.en
dc.referencesMarciniak M., Chudziak Ł. 2015. Nowa metoda pomiaru współczynnika filtracji osadów dennych. Przegląd Geologiczny 63 (10/2): 919–925.en
dc.referencesMintening S.M., Int-Veen I., Lӧder M.G.J., Primpke S., Gerdts G. 2016. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research 30: 1–8.en
dc.referencesMossotti R., Fontana G.D., Anceschi A., Gasparin E., Battistini T. 2022. Preparation and Analysis of Standard Microplastics, [In:] Advances and Challenges in Microplastics: 1–16.en
dc.referencesMyślińska E. 2019. Laboratoryjne badania gruntów i gleb (wydanie 3). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.en
dc.referencesPisarczyk S. 2014. Gruntoznawstwo inżynierskie (wydanie drugie poprawione i uzupełnione). Wydawnictwo Naukowe PWN, Warszawa.en
dc.referencesRacinowski R., Szczypek T., Wach J. 2001. Prezentacja i interpretacja wyników badań uziarnienia osadów czwartorzędowych (wydanie drugie poprawione i uzupełnione). Nauki o Ziemi, Wydawnictwo Uniwersytetu Śląskiego, Katowice.en
dc.referencesRadford F., Horton A., Hudson M., Shaw P., Ian Williams I. 2023. Agricultural soils and microplastics: Are biosolids the problem? Frontiers in Soil Science 2: 1–14.en
dc.referencesRosiek K. 2017. Wody opadowe jako przedmiot gospodarowania. Gospodarka w Praktyce i Teorii 3: 61–67.en
dc.referencesSchütze B., Thomas D., Kraft M., Brunotte J., Kreuzig R. 2022. Comparison of different salt solutions for density separation of conventional and biodegradable microplastic from solid sample matrices. Environmental Science and Pollution Research 29: 81452–81467.en
dc.referencesSzymański A. 2007. Mechanika gruntów. Wydawnictw SGGW, Warszawa.en
dc.referencesTriska F.T., Duff J.H., Avanzino R.J. 1993. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic surface. Hydrobiologia 251: 167–184.en
dc.referencesVermeiren P., Muñoz C., Ikejima K. 2020. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environmental Pollution 262: 114298.en
dc.referencesWaldschläger K., Schüttrumpf H. 2020. Infiltration behavior od microplastic particles with different densities, size, and shapes-from glass spheres to natural sediments. Environmelntal Science Technology 54 (15): 9366–9373.en
dc.referencesWang Y., Okochi H., Tani Y., Hayami H., Minami Y., Katsumi N., Takeuchi M., Sorimachi A., Fujii Y., Kajino M., Adachi K., Ishihara Y., Iwamoto Y., Niida Y. 2023. Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation. Environmental Chemistry Letters 21: 3055–3062.en
dc.referencesWondzell S.M. 2011. The role of the hyporheic zone across stream networks. Hydrological Processes 25: 3525–3532.en
dc.referencesYang L., Zhang Y., Kang S., Wang Z., Wu C. 2021. Microplastics in soil: A review on methods, occurrence, sources and potential risk. Science of The Total Environment 780: 146546.en
dc.referencesYanuar A.T., Pramudia Z., Susanti Y.A.D., Kurniawan A. 2024. Analysis of microplastics in spring water. Emerging Contaminants 10: 100277.en
dc.referencesZhang G.S., Liu Y.F. 2018. The distribution of microplastics in soil aggregate fractions in southwestern China. The Science of the Total Environment 642: 12–20.en
dc.referencesZiułkiewicz M., Grulke R. 2024. Hydrochemical aspects of water exchange through the bottom of headwater stream in suburban zone on the example of the Malina watercourse in Zgierz (Central Poland). Geology, Geophysics & Environment 50 (3): 231–251.en
dc.referencesZiułkiewicz M., Fortuniak A., Górowski J., Ajzert M., Kaźmierczak K., Lik K., Mytkowska N., Ślusarczyk T. 2023. Zintegrowana ocena stanu hydrochemicznego doliny rzecznej w obszarze podmiejskim na przykładzie Strugi Dobieszkowskiej (Młynówki) (gm. Stryków). Acta Universitatis Lodziensis. Folia Geographica Physica 22: 19–36.en
dc.referenceshttps://klimat.imgw.plen
dc.referenceshttps://scalgo.comen
dc.referencesEuropean Union, European Parliament. Directorate General for Communication. Article 20181212STO21610. 25 June 2024.en
dc.referencesEuropean Union, Group of Chief Scientific Advisors. Scientific Opinion 6/2019. (Supported by SAPEA Evidence Review Report No. 4). Brussels, 30 April 2019.en
dc.contributor.authorEmailSerwach, Karolina - karolina.serwach@edu.uni.lodz.pl
dc.contributor.authorEmailZiułkiewicz, Maciej - maciej.ziulkiewicz@geo.uni.lodz.pl
dc.identifier.doi10.18778/1427-9711.24.01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0