Pokaż uproszczony rekord

dc.contributor.authorSmarzewska, Sylwia
dc.contributor.authorMirceski, Valentin
dc.contributor.authorKoszelska, Kamila
dc.date.accessioned2025-03-19T07:55:28Z
dc.date.available2025-03-19T07:55:28Z
dc.date.issued2024
dc.identifier.citationKamila Koszelska, Sylwia Smarzewska, Valentin Mirceski, Dopamine modified electrodes for indirect voltammetric determination of magnesium ions, Diamond and Related Materials, Volume 145, 2024, 111123, ISSN 0925-9635, https://doi.org/10.1016/j.diamond.2024.111123.pl_PL
dc.identifier.issn0925-9635
dc.identifier.urihttp://hdl.handle.net/11089/55038
dc.description.abstractThis article outlines the fabrication process of an electrochemical sensor designed for the innovative determination of magnesium ions based on the electrochemistry of dopamine. The sensor operates under voltammetric conditions, accounting for variations in the electrochemical reversibility of immobilized dopamine in the presence of magnesium ions under conditions of square-wave voltammetry. The immobilization of dopamine on the glassy carbon electrode is achieved through the electrochemical oxidation of its side amino group, leading to covalent grafting onto the electrode surface. All stages of the proposed electrode surface modification procedure were carefully optimized. The dopamine sensor exhibited a linear response in the concentration range of magnesium ions from 0.1 to 10 mmol L-1, with a limit of detection (LOD) value equal to 1.3 × 10−5 mol L−1. To validate the electroanalytical significance of the developed methodology, real food supplement samples were quantitatively analyzed, demonstrating a highly satisfactory rate of recovery. The proposed voltammetric method serves as a simple and cost-effective procedure for the indirect determination of magnesium ions. Additionally, this approach allows for the analysis of real samples without the need for time-consuming preparation steps, as the complex matrices of food supplement samples did not adversely affect the registered currents.pl_PL
dc.description.sponsorshipThe research was financed by the PRELUDIUM grant of the National Science Centre (NCN) in Cracow, Poland (Grant no. 2021/41/N/ST4/ 01425).pl_PL
dc.language.isoenpl_PL
dc.publisherElsevierpl_PL
dc.relation.ispartofseriesDiamond & Related Materials;111123
dc.subjectVoltammetrypl_PL
dc.subjectMagnesiumpl_PL
dc.subjectDopaminepl_PL
dc.subjectGraftingpl_PL
dc.subjectSensingpl_PL
dc.titleDopamine modified electrodes for indirect voltammetric determination of magnesium ionspl_PL
dc.typeArticlepl_PL
dc.page.number1-16pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403 Lodz, Polandpl_PL
dc.referencesA.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust, Geochemistry International, 44 (2006) 48-55.pl_PL
dc.referencesR. Luisi, S.J. Enna, D.B. Bylund, Magnesium, xPharm: The Comprehensive Pharmacology Reference, Elsevier, New York, 2009, pp. 1-9.pl_PL
dc.referencesF. Akhter, A. Nag, M.E.E. Alahi, H. Liu, S.C. Mukhopadhyay, Electrochemical detection of calcium and magnesium in water bodies, Sensors and Actuators A: Physical, 305 (2020) 111949.pl_PL
dc.referencesT.R.C. Zezza, L.L. Paim, N.R. Stradiotto, Determination of Mg (II) in biodiesel by adsorptive stripping voltammetry at a mercury film electrode in the presence of sodium thiopentone, International Journal of Electrochemical Science, 8 (2013) 658-669.pl_PL
dc.referencesJ.B. Willis, The determination of metals in blood serum by atomic absorption spectroscopy—II: Magnesium, Spectrochimica Acta, 16 (1960) 273-278.pl_PL
dc.referencesM. Vespa, B. Lothenbach, R. Dähn, T. Huthwelker, E. Wieland, Characterisation of magnesium silicate hydrate phases (M-S-H): A combined approach using synchrotron-based absorption-spectroscopy and ab initio calculations, Cement and Concrete Research, 109 (2018) 175-183.pl_PL
dc.referencesK. Sugisawa, T. Kaneko, T. Sago, T. Sato, Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: Method development and application in product manufacturing, Journal of Pharmaceutical and Biomedical Analysis, 49 (2009) 858-861pl_PL
dc.referencesA. Abarca, E. Canfranc, I. Sierra, M.L. Marina, A validated flame AAS method for determining magnesium in a multivitamin pharmaceutical preparation, Journal of Pharmaceutical and Biomedical Analysis, 25 (2001) 941-945.pl_PL
dc.referencesB. Raju, E. Murphy, L.A. Levy, R.D. Hall, R.E. London, A fluorescent indicator for measuring cytosolic free magnesium, Am J Physiol, 256 (1989) C540-548.pl_PL
dc.referencesM.J. Stone, P.E. Chowdrey, P. Miall, C.P. Price, Validation of an enzymatic total magnesium determination based on activation of modified isocitrate dehydrogenase, Clinical Chemistry, 42 (1996) 1474-1477.pl_PL
dc.referencesT. Iwachido, T. Ikeda, M. Zenki, Determination of Ammonium and Other Major Cations in River and Rain Water by Ion Chromatography Using Silica Gel as an Ion Exchanger, Analytical Sciences, 6 (1990) 593-597.pl_PL
dc.referencesS. Khalil, S.S. Alharthi, Ion-selective Membrane Sensor for Magnesium Determination in Pharmaceutical Formulations, International Journal of Electrochemical Science, 15 (2020) 9223-9232pl_PL
dc.referencesS. Carter, A. Fisher, R. Garcia, B. Gibson, J. Marshall, I. Whiteside, Atomic spectrometry update: review of advances in the analysis of metals, chemicals and functional materials, Journal of Analytical Atomic Spectrometry, 31 (2016) 2114-2164.pl_PL
dc.referencesZ.O. Tesfaldet, J.F. van Staden, R.I. Stefan, Spectrophotometric determination of magnesium in pharmaceutical preparations by cost-effective sequential injection analysis, Talanta, 64 (2004) 981-988.pl_PL
dc.referencesO.A. Farghaly, A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode, Talanta, 63 (2004) 497-501.pl_PL
dc.referencesX. Gao, H. Huang, S. Niu, H. Ye, Z. Lin, B. Qiu, G. Chen, Determination of magnesium ion in serum samples by a DNAzyme-based electrochemical biosensor, Analytical Methods, 4 (2012) 947-952.pl_PL
dc.referencesC.M.G. van den Berg, Potentials and potentialities of cathodic stripping voltammetry of trace elements in natural waters, Analytica Chimica Acta, 250 (1991) 265-276.pl_PL
dc.referencesG. Muruganandam, N. Nesakumar, A.J. Kulandaisamy, J.B. Rayappan, B.M. Gunasekaran, Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst, Chemosensors, 2023.pl_PL
dc.referencesJ. Ghilane, F. Hauquier, J.C. Lacroix, Oxidative and stepwise grafting of dopamine inner-sphere redox couple onto electrode material: electron transfer activation of dopamine, Anal Chem, 85 (2013) 11593-11601.pl_PL
dc.referencesM.L. Heien, A.S. Khan, J.L. Ariansen, J.F. Cheer, P.E. Phillips, K.M. Wassum, R.M. Wightman, Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats, Proc Natl Acad Sci U S A, 102 (2005) 10023-10028.pl_PL
dc.referencesJ.B. Zimmerman, R.M. Wightman, Simultaneous electrochemical measurements of oxygen and dopamine in vivo, Anal Chem, 63 (1991) 24-28.pl_PL
dc.referencesZ. Xu, Mechanics of metal-catecholate complexes: The roles of coordination state and metal types, Scientific Reports, 3 (2013) 2914.pl_PL
dc.referencesV. Mirčeski, R. Gulaboski, I. Bogeski, M. Hoth, Redox Chemistry of Ca-Transporter 2-Palmitoylhydroquinone in an Artificial Thin Organic Film Membrane, The Journal of Physical Chemistry C, 111 (2007) 6068-6076.pl_PL
dc.referencesI. Bogeski, R. Gulaboski, R. Kappl, V. Mirceski, M. Stefova, J. Petreska, M. Hoth, Calcium Binding and Transport by Coenzyme Q, Journal of the American Chemical Society, 133 (2011) 9293-9303.pl_PL
dc.referencesJ. Ghilane, P. Martin, H. Randriamahazaka, J.-C. Lacroix, Electrochemical oxidation of primary amine in ionic liquid media: Formation of organic layer attached to electrode surface, Electrochemistry Communications, 12 (2010) 246-249.pl_PL
dc.referencesH. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318 (2007) 426-430.pl_PL
dc.referencesY. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions, Thin Solid Films, 497 (2006) 270-278.pl_PL
dc.referencesB. Barbier, J. Pinson, G. Desarmot, M. Sanchez, Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon‐Epoxy Composites, Journal of The Electrochemical Society, 137 (1990) 1757-1764.pl_PL
dc.referencesI. Gallardo, J. Pinson, N. Vilà, Spontaneous Attachment of Amines to Carbon and Metallic Surfaces, The Journal of Physical Chemistry B, 110 (2006) 19521-19529.pl_PL
dc.referencesD. Bélanger, J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, 40 (2011) 3995-4048.pl_PL
dc.referencesC. Bourdillon, M. Delamar, C. Demaille, R. Hitmi, J. Moiroux, J. Pinson, Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts, Journal of Electroanalytical Chemistry, 336 (1992) 113-123.pl_PL
dc.referencesP. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J.-M. Savéant, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, 119 (1997) 201-207.pl_PL
dc.referencesA. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Glassy carbon electrodes: I. Characterization and electrochemical activation, Carbon, 39 (2001) 1195-1205.pl_PL
dc.referencesD.M. Anjo, M. Kahr, M.M. Khodabakhsh, S. Nowinski, M. Wanger, Electrochemical activation of carbon electrodes in base: minimization of dopamine adsorption and electrode capacitance, Analytical Chemistry, 61 (1989) 2603-2608pl_PL
dc.referencesH. Randriamahazaka, J. Ghilane, Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis, Electroanalysis, 28 (2016) 13-26.pl_PL
dc.referencesV. Mirceski, S. Komorsky-Lovric, M. Lovric, Square-wave voltammertry: theory and application, Springer-Verlag, Heidelberg, 2007.pl_PL
dc.referencesV. Mirceski, D. Guziejewski, K. Lisichkov, Electrode kinetic measurements with square-wave voltammetry at a constant scan rate, Electrochimica Acta, 114 (2013) 667-673.pl_PL
dc.referencesD. Guziejewski, V. Mirceski, D. Jadresko, Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate, Electroanalysis, 27 (2015) 67-73.pl_PL
dc.referencesV. Mirčeski, M. Lovrić, Split square-wave voltammograms of surface redox reactions, Electroanalysis, 9 (1997) 1283-1287.pl_PL
dc.contributor.authorEmailsylwia.smarzewska@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailkamila.koszelska@chemia.uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.diamond.2024.111123
dc.relation.volume145pl_PL
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord