dc.contributor.author | Smarzewska, Sylwia | |
dc.contributor.author | Mirceski, Valentin | |
dc.contributor.author | Koszelska, Kamila | |
dc.date.accessioned | 2025-03-19T07:55:28Z | |
dc.date.available | 2025-03-19T07:55:28Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Kamila Koszelska, Sylwia Smarzewska, Valentin Mirceski, Dopamine modified electrodes for indirect voltammetric determination of magnesium ions, Diamond and Related Materials, Volume 145, 2024, 111123, ISSN 0925-9635, https://doi.org/10.1016/j.diamond.2024.111123. | pl_PL |
dc.identifier.issn | 0925-9635 | |
dc.identifier.uri | http://hdl.handle.net/11089/55038 | |
dc.description.abstract | This article outlines the fabrication process of an electrochemical sensor designed for the innovative determination of magnesium ions based on the electrochemistry of dopamine. The sensor operates under voltammetric conditions, accounting for variations in the electrochemical reversibility of immobilized dopamine in the presence of magnesium ions under conditions of square-wave voltammetry. The immobilization of dopamine on the glassy carbon electrode is achieved through the electrochemical oxidation of its side amino group, leading to covalent grafting onto the electrode surface. All stages of the proposed electrode surface modification procedure were carefully optimized. The dopamine sensor exhibited a linear response in the concentration range of magnesium ions from 0.1 to 10 mmol L-1, with a limit of detection (LOD) value equal to 1.3 × 10−5 mol L−1. To validate the electroanalytical significance of the developed methodology, real food supplement samples were quantitatively analyzed, demonstrating a highly satisfactory rate of recovery. The proposed voltammetric method serves as a simple and cost-effective procedure for the indirect determination of magnesium ions. Additionally, this approach allows for the analysis of real samples without the need for time-consuming preparation steps, as the complex matrices of food supplement samples did not adversely affect the registered currents. | pl_PL |
dc.description.sponsorship | The research was financed by the PRELUDIUM grant of the National
Science Centre (NCN) in Cracow, Poland (Grant no. 2021/41/N/ST4/
01425). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier | pl_PL |
dc.relation.ispartofseries | Diamond & Related Materials;111123 | |
dc.subject | Voltammetry | pl_PL |
dc.subject | Magnesium | pl_PL |
dc.subject | Dopamine | pl_PL |
dc.subject | Grafting | pl_PL |
dc.subject | Sensing | pl_PL |
dc.title | Dopamine modified electrodes for indirect voltammetric determination of magnesium ions | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-16 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403 Lodz, Poland | pl_PL |
dc.references | A.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust, Geochemistry International, 44 (2006) 48-55. | pl_PL |
dc.references | R. Luisi, S.J. Enna, D.B. Bylund, Magnesium, xPharm: The Comprehensive Pharmacology Reference, Elsevier, New York, 2009, pp. 1-9. | pl_PL |
dc.references | F. Akhter, A. Nag, M.E.E. Alahi, H. Liu, S.C. Mukhopadhyay, Electrochemical detection of calcium and magnesium in water bodies, Sensors and Actuators A: Physical, 305 (2020) 111949. | pl_PL |
dc.references | T.R.C. Zezza, L.L. Paim, N.R. Stradiotto, Determination of Mg (II) in biodiesel by adsorptive stripping voltammetry at a mercury film electrode in the presence of sodium thiopentone, International Journal of Electrochemical Science, 8 (2013) 658-669. | pl_PL |
dc.references | J.B. Willis, The determination of metals in blood serum by atomic absorption spectroscopy—II: Magnesium, Spectrochimica Acta, 16 (1960) 273-278. | pl_PL |
dc.references | M. Vespa, B. Lothenbach, R. Dähn, T. Huthwelker, E. Wieland, Characterisation of magnesium silicate hydrate phases (M-S-H): A combined approach using synchrotron-based absorption-spectroscopy and ab initio calculations, Cement and Concrete Research, 109 (2018) 175-183. | pl_PL |
dc.references | K. Sugisawa, T. Kaneko, T. Sago, T. Sato, Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: Method development and application in product manufacturing, Journal of Pharmaceutical and Biomedical Analysis, 49 (2009) 858-861 | pl_PL |
dc.references | A. Abarca, E. Canfranc, I. Sierra, M.L. Marina, A validated flame AAS method for determining magnesium in a multivitamin pharmaceutical preparation, Journal of Pharmaceutical and Biomedical Analysis, 25 (2001) 941-945. | pl_PL |
dc.references | B. Raju, E. Murphy, L.A. Levy, R.D. Hall, R.E. London, A fluorescent indicator for measuring cytosolic free magnesium, Am J Physiol, 256 (1989) C540-548. | pl_PL |
dc.references | M.J. Stone, P.E. Chowdrey, P. Miall, C.P. Price, Validation of an enzymatic total magnesium determination based on activation of modified isocitrate dehydrogenase, Clinical Chemistry, 42 (1996) 1474-1477. | pl_PL |
dc.references | T. Iwachido, T. Ikeda, M. Zenki, Determination of Ammonium and Other Major Cations in River and Rain Water by Ion Chromatography Using Silica Gel as an Ion Exchanger, Analytical Sciences, 6 (1990) 593-597. | pl_PL |
dc.references | S. Khalil, S.S. Alharthi, Ion-selective Membrane Sensor for Magnesium Determination in Pharmaceutical Formulations, International Journal of Electrochemical Science, 15 (2020) 9223-9232 | pl_PL |
dc.references | S. Carter, A. Fisher, R. Garcia, B. Gibson, J. Marshall, I. Whiteside, Atomic spectrometry update: review of advances in the analysis of metals, chemicals and functional materials, Journal of Analytical Atomic Spectrometry, 31 (2016) 2114-2164. | pl_PL |
dc.references | Z.O. Tesfaldet, J.F. van Staden, R.I. Stefan, Spectrophotometric determination of magnesium in pharmaceutical preparations by cost-effective sequential injection analysis, Talanta, 64 (2004) 981-988. | pl_PL |
dc.references | O.A. Farghaly, A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode, Talanta, 63 (2004) 497-501. | pl_PL |
dc.references | X. Gao, H. Huang, S. Niu, H. Ye, Z. Lin, B. Qiu, G. Chen, Determination of magnesium ion in serum samples by a DNAzyme-based electrochemical biosensor, Analytical Methods, 4 (2012) 947-952. | pl_PL |
dc.references | C.M.G. van den Berg, Potentials and potentialities of cathodic stripping voltammetry of trace elements in natural waters, Analytica Chimica Acta, 250 (1991) 265-276. | pl_PL |
dc.references | G. Muruganandam, N. Nesakumar, A.J. Kulandaisamy, J.B. Rayappan, B.M. Gunasekaran, Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst, Chemosensors, 2023. | pl_PL |
dc.references | J. Ghilane, F. Hauquier, J.C. Lacroix, Oxidative and stepwise grafting of dopamine inner-sphere redox couple onto electrode material: electron transfer activation of dopamine, Anal Chem, 85 (2013) 11593-11601. | pl_PL |
dc.references | M.L. Heien, A.S. Khan, J.L. Ariansen, J.F. Cheer, P.E. Phillips, K.M. Wassum, R.M. Wightman, Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats, Proc Natl Acad Sci U S A, 102 (2005) 10023-10028. | pl_PL |
dc.references | J.B. Zimmerman, R.M. Wightman, Simultaneous electrochemical measurements of oxygen and dopamine in vivo, Anal Chem, 63 (1991) 24-28. | pl_PL |
dc.references | Z. Xu, Mechanics of metal-catecholate complexes: The roles of coordination state and metal types, Scientific Reports, 3 (2013) 2914. | pl_PL |
dc.references | V. Mirčeski, R. Gulaboski, I. Bogeski, M. Hoth, Redox Chemistry of Ca-Transporter 2-Palmitoylhydroquinone in an Artificial Thin Organic Film Membrane, The Journal of Physical Chemistry C, 111 (2007) 6068-6076. | pl_PL |
dc.references | I. Bogeski, R. Gulaboski, R. Kappl, V. Mirceski, M. Stefova, J. Petreska, M. Hoth, Calcium Binding and Transport by Coenzyme Q, Journal of the American Chemical Society, 133 (2011) 9293-9303. | pl_PL |
dc.references | J. Ghilane, P. Martin, H. Randriamahazaka, J.-C. Lacroix, Electrochemical oxidation of primary amine in ionic liquid media: Formation of organic layer attached to electrode surface, Electrochemistry Communications, 12 (2010) 246-249. | pl_PL |
dc.references | H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318 (2007) 426-430. | pl_PL |
dc.references | Y. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions, Thin Solid Films, 497 (2006) 270-278. | pl_PL |
dc.references | B. Barbier, J. Pinson, G. Desarmot, M. Sanchez, Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon‐Epoxy Composites, Journal of The Electrochemical Society, 137 (1990) 1757-1764. | pl_PL |
dc.references | I. Gallardo, J. Pinson, N. Vilà, Spontaneous Attachment of Amines to Carbon and Metallic Surfaces, The Journal of Physical Chemistry B, 110 (2006) 19521-19529. | pl_PL |
dc.references | D. Bélanger, J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, 40 (2011) 3995-4048. | pl_PL |
dc.references | C. Bourdillon, M. Delamar, C. Demaille, R. Hitmi, J. Moiroux, J. Pinson, Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts, Journal of Electroanalytical Chemistry, 336 (1992) 113-123. | pl_PL |
dc.references | P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J.-M. Savéant, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, 119 (1997) 201-207. | pl_PL |
dc.references | A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Glassy carbon electrodes: I. Characterization and electrochemical activation, Carbon, 39 (2001) 1195-1205. | pl_PL |
dc.references | D.M. Anjo, M. Kahr, M.M. Khodabakhsh, S. Nowinski, M. Wanger, Electrochemical activation of carbon electrodes in base: minimization of dopamine adsorption and electrode capacitance, Analytical Chemistry, 61 (1989) 2603-2608 | pl_PL |
dc.references | H. Randriamahazaka, J. Ghilane, Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis, Electroanalysis, 28 (2016) 13-26. | pl_PL |
dc.references | V. Mirceski, S. Komorsky-Lovric, M. Lovric, Square-wave voltammertry: theory and application, Springer-Verlag, Heidelberg, 2007. | pl_PL |
dc.references | V. Mirceski, D. Guziejewski, K. Lisichkov, Electrode kinetic measurements with square-wave voltammetry at a constant scan rate, Electrochimica Acta, 114 (2013) 667-673. | pl_PL |
dc.references | D. Guziejewski, V. Mirceski, D. Jadresko, Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate, Electroanalysis, 27 (2015) 67-73. | pl_PL |
dc.references | V. Mirčeski, M. Lovrić, Split square-wave voltammograms of surface redox reactions, Electroanalysis, 9 (1997) 1283-1287. | pl_PL |
dc.contributor.authorEmail | sylwia.smarzewska@chemia.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | kamila.koszelska@chemia.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1016/j.diamond.2024.111123 | |
dc.relation.volume | 145 | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |