dc.contributor.author | Rutkowska, Aleksandra | |
dc.contributor.author | Szyszko, Magdalena | |
dc.contributor.author | Próchniak, Mariusz | |
dc.date.accessioned | 2024-09-30T13:27:59Z | |
dc.date.available | 2024-09-30T13:27:59Z | |
dc.date.issued | 2024-09-30 | |
dc.identifier.issn | 1508-2008 | |
dc.identifier.uri | http://hdl.handle.net/11089/53263 | |
dc.description.abstract | Inflation expectations are a crucial variable for central banks. However, empirically examining their properties is challenging. This paper juxtaposes the properties of consumer and professional expectations. It also assesses the degree of forward- and backward-lookingness and the information content of expectations. We apply entropy-based measures (common information and mutual common information) to capture nonlinear dependencies and dynamic time warping to account for different lags in the relationships. The study covers 12 inflation-targeting economies from the European region. The results suggest that in most countries, professionals are more forward-looking, and consumers follow professionals. Both groups of economic agents present expectations that are aligned in terms of information content. However, cross-country differences occur. These results imply that, from the central bank’s point of view, communication and practices designed to shape expectations, even if understood mostly by specialists, are effective also for consumers. The novelty of this study lies in its use of alternative methods to tackle the formation and dependencies between heterogeneous expectations. This avoids the drawbacks of a standard approach and allows broader conclusions to be drawn. | en |
dc.description.abstract | Oczekiwania inflacyjne są kluczową zmienną dla banków centralnych. Jednak empiryczne badanie ich właściwości stanowi wyzwanie. Celem tego badania jest porównanie właściwości oczekiwań konsumentów i profesjonalistów oraz ocena nastawienia na przyszłość i informacji zawartej w oczekiwaniach tych grup uczestników rynku. W badaniu zastosowano miary oparte na entropii, aby uchwycić nieliniowe zależności między zmiennymi i algorytm dynamicznej transformaty czasowej (DTW) oraz uwzględnić różne opóźnienia w relacjach. Badanie obejmuje 12 gospodarek regionu europejskiego, w których realizowana jest strategia celu inflacyjnego. Wyniki sugerują, że w większości krajów profesjonaliści bardziej wybiegają w przyszłość, a konsumenci podążają za profesjonalistami. Obie grupy podmiotów gospodarczych prezentują oczekiwania zgodne pod względem zawartości informacyjnej. Występują różnice między krajami. Wyniki badań potwierdzają, że komunikacja i inne działania banków centralnych, nakierowane na kształtowanie oczekiwań, nawet jeśli skierowane są głównie do specjalistów, nie pozostają bez znaczenia dla konsumentów. Wartość dodana badania wynika z zastosowania alternatywnej metody oceny oczekiwań, pozwalającej na uniknięcie wad metod standardowych oraz na wyciągnięcie szerszych wniosków na temat zależności. | pl |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Comparative Economic Research. Central and Eastern Europe;3 | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | inflation expectation | en |
dc.subject | mutual information | en |
dc.subject | dynamic time warping | en |
dc.subject | oczekiwania inflacyjne | pl |
dc.subject | wzajemna informacja | pl |
dc.subject | algorytm DTW | pl |
dc.title | Consumer and Professional Inflation Expectations – Properties and Mutual Dependencies | en |
dc.title.alternative | Oczekiwania inflacyjne konsumentów i profesjonalistów – własności i wzajemne zależności | pl |
dc.type | Article | |
dc.page.number | 93-116 | |
dc.contributor.authorAffiliation | Rutkowska, Aleksandra - Poznan University of Economics and Business, Poznan, Poland | en |
dc.contributor.authorAffiliation | Szyszko, Magdalena - WSB Merito University Poznan, Poznan, Poland | en |
dc.contributor.authorAffiliation | Próchniak, Mariusz - SGH Warsaw School of Economics, Warsaw, Poland | en |
dc.identifier.eissn | 2082-6737 | |
dc.references | Abildgren, K., Kuchler, A. (2021), Revisiting the inflation perception conundrum, “Journal of Macroeconomics”, 67, 103264, https://doi.org/10.1016/j.jmacro.2020.103264 | en |
dc.references | Batchelor, R.A., Orr, A.B. (1988), Inflation Expectations Revisited, “Economica”, 55 (219), pp. 317–331, https://doi.org/10.2307/2554010 | en |
dc.references | Będowska-Sójka, B., Kliber, A., Rutkowska, A. (2021), Is Bitcoin Still a King? Relationships between Prices, Volatility and Liquidity of Cryptocurrencies during the Pandemic, “Entropy”, 23 (11), 1386, https://doi.org/10.3390/e23111386 | en |
dc.references | Binder, C. (2015), Whose expectations augment the phillips Phillips curve?, “Economics Letters”, 136, pp. 35–38, https://doi.org/10.1016/j.econlet.2015.08.013 | en |
dc.references | Carlson, J.A., Parkin, M. (1975), Inflation Expectations, “Economica”, 42 (166), pp. 123–138, https://doi.org/10.2307/2553588 | en |
dc.references | Carroll, C.D. (2003), Macroeconomic Expectations of Households and Professional Forecasters, “The Quarterly Journal of Economics”, 1 (118), pp. 269–298, https://doi.org/10.1162/00335530360535207 | en |
dc.references | Coibion, O., Gorodnichenko, Y. (2015), Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation, “American Economic Journal: Macroeconomics”, 7 (1), pp. 197–232, https://doi.org/10.1257/mac.20130306 | en |
dc.references | Coibion, O., Gorodnichenko, Y.R.K. (2018), The Formation of Expectations, Inflation, and the Phillips Curve, “Journal of Economic Literature”, 56 (4), pp. 1447–1491, https://doi.org/10.1257/jel.20171300 | en |
dc.references | D’Acunto, F., Hoang, D., Paloviita, M., Weber, M. (2019), Cognitive Abilities and Inflation Expectations, “AEA Papers and Proceedings”, 109, pp. 562–566, https://doi.org/10.1257/pandp.20191050 | en |
dc.references | Dionisio, A., Menezes, R., Mendes, D.A. (2004), Mutual information: a measure of dependency for nonlinear time series, “Physica A: Statistical Mechanics and its Applications”, 344 (1–2), pp. 326–329, https://doi.org/10.1016/j.physa.2004.06.144 | en |
dc.references | Dobrushin, R. (1963), General formulation of Shannon’s main theorem in information theory, [in:] A.A. Andronov, D.V. Anosov, Ding Shia-shi, R.L. Dobrušin, G.V. Gil’, A.N. Kolmogorov, E.A. Leontovič, A.D. Myškis, O.A. Oleĭnik, S.L. Sobolev, V.M. Staržinskiĭ, Eleven Papers in Analysis: Nine Papers on Differential Equations, Two on Information Theory, “American Mathematical Society Translations”, 33, pp. 323–438, https://doi.org/10.1090/trans2/033/11 | en |
dc.references | Dovern, J., Fritsche, U., Slacalek, J. (2012), Disagreement Among Forecasters in G7 Countries, “The Review of Economics and Statistics”, 94 (4), pp. 1081–1096, https://doi.org/10.1162/REST_a_00207 | en |
dc.references | Drager, L. (2015), Inflation perceptions and expectations in Sweden – Are media reports the missing link?, “Oxford Bulletin of Economics and Statistics”, 77 (5), pp. 681–700, https://doi.org/10.1111/obes.12078 | en |
dc.references | El Amouri, H., Lampert, T., Gançarski, P., Mallet, C. (2023), Constrained DTW preserving shapelets for explainable time-series clustering, “Pattern Recognition”, 143, 109804, https://doi.org/10.1016/j.patcog.2023.109804 | en |
dc.references | European Commission (2016), The Joint Harmonised EU Programme of Business and Consumer Survey. User guide, Brussels. | en |
dc.references | Evans, G., Gulamani, R. (1984), Tests for rationality of the Carlson-Parkin inflation expectations data, “Oxford Bulletin of Economics and Statistics”, 46 (1), pp. 1–19, https://doi.org/10.1111/j.1468-0084.1984.mp46001001.x | en |
dc.references | Ferreira, J., Morais, F. (2023), Predict or to be predicted? A transfer entropy view between adaptive green markets, structural shocks and sentiment index, “Finance Research Letters”, 56, 104100, https://doi.org/10.1016/j.frl.2023.104100 | en |
dc.references | Franses, P.H., Wiemann, T. (2020), Intertemporal Similarity of Economic Time Series: An Application of Dynamic Time Warping, “Computational Economics”, 56, pp. 59–75, https://doi.org/10.1007/s10614-020-09986-0 | en |
dc.references | Gerberding, C. (2001), The Information Content of Survey Data on Expected Price Developments for Monetary Policy, “Economic Research Centre of the Deutsche Bundesbank”, 9, pp. 30–52, https://doi.org/10.2139/ssrn.2785125 | en |
dc.references | Hahn, J., Hausman, J., Kuersteiner, G. (2004), Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations, “The Econometrics Journal”, 7 (1), pp. 272–306, https://doi.org/10.1111/j.1368-423X.2004.00131.x | en |
dc.references | Han, T., Peng, Q., Zhu, Z., Shen, Y., Huang, H., Abid, N.N. (2020), A pattern representation of stock time series based on DTW, “Physica A: Statistical Mechanics and its Applications”, 550, 124161, https://doi.org/10.1016/j.physa.2020.124161 | en |
dc.references | Lahmiri, S., Bekiros, S. (2020), Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID–19 pandemic, “Chaos, Solitons & Fractals”, 139, https://doi.org/10.1016/j.chaos.2020.110084 | en |
dc.references | Lucas Jr., R.E. (1972), Expectations and the neutrality of money, “Journal of Economic Theory”, 4 (2), pp. 103–124, https://doi.org/10.1016/0022-0531(72)90142-1 | en |
dc.references | Lucas Jr., R.E. (1976), Econometric policy evaluation: A critique, “Carnegie-Rochester Conference Series on Public Policy”, 1, pp. 19–46. | en |
dc.references | Łyziak, T. (2013), Formation of Inflation Expectations by Different Economic Agents, “Eastern European Economics”, 51 (6), pp. 5–33, https://doi.org/10.2753/EEE0012-8775510601 | en |
dc.references | Łyziak, T., Mackiewicz-Łyziak, J. (2014), Do Consumers in Europe Anticipate Future Inflation?, “Eastern European Economics”, 52 (3), pp. 5–32, https://doi.org/10.2753/EEE0012-8775520301 | en |
dc.references | Łyziak, T., Sheng, X.S. (2023), Disagreement in Consumer Inflation Expectation, “Journal of Money, Credit and Banking”, 55 (8), pp. 2215–2241, https://doi.org/10.1111/jmcb.12981 | en |
dc.references | Martens, E.P., Pestman, W.R., Boer, A. de, Belitser, S.V., Klungel, O.H. (2006), Instrumental Variables: Application and Limitations, “Epidemiology”, 17 (3), pp. 260–267, https://doi.org/10.1097/01.ede.0000215160.88317.cb | en |
dc.references | Muth, J.F. (1961), Rational Expectations and the Theory of Price Movements, “Econometrica: Journal of the Econometric Society”, 29 (3), pp. 315–335, https://doi.org/10.2307/1909635 | en |
dc.references | Raihan, T. (2017), Predicting US Recessions: A Dynamic Time Warping Exercise in Economics, “SSRN Electronic Journal”, https://doi.org/10.2139/ssrn.3047649 | en |
dc.references | Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E. (2012), Searching and mining trillions of time series subsequences under dynamic time warping, [in:] Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing China August 12–16, 2012, pp. 262–270, https://dl.acm.org/doi/10.1145/2339530.2339576 | en |
dc.references | Rutkowska, A., Szyszko, M. (2022), New DTW Windows Type for Forward- and Backward-Lookingness Examination. Application for Inflation Expectation, “Computational Economics”, 59 (2), pp. 701–718, https://doi.org/10.1007/s10614-021-10103-y | en |
dc.references | Staiger, D., Stock, J.H. (1994), Instrumental variables regression with weak instruments, “Technical Working Paper”, 151, National Bureau of Economic Research, Cambridge, https://doi.org/10.3386/t0151 | en |
dc.references | Stock, J.H., Wright, J.H. (2000), GMM with Weak Identification, “Econometrica”, 68 (5), pp. 1055–1096, https://doi.org/10.1111/1468-0262.00151 | en |
dc.references | Wyner, A.D. (1978), A definition of conditional mutual information for arbitrary ensembles, “Information and Control”, 38 (1), pp. 51–59, https://doi.org/10.1016/S0019-9958(78)90026-8 | en |
dc.references | Zhao, Y. (2022), Internal consistency of household inflation expectations: Point forecasts vs. density forecasts, “International Journal of Forecasting”, 39 (4), pp. 1713–1735, https://doi.org/10.1016/j.ijforecast.2022.08.008 | en |
dc.contributor.authorEmail | Rutkowska, Aleksandra - aleksandra.rutkowska@ue.poznan.pl | |
dc.contributor.authorEmail | Szyszko, Magdalena - magdalena.szyszko@wsb.poznan.pl | |
dc.contributor.authorEmail | Próchniak, Mariusz - mproch@sgh.waw.pl | |
dc.identifier.doi | 10.18778/1508-2008.27.23 | |
dc.relation.volume | 27 | |