Pokaż uproszczony rekord

dc.contributor.authorPruszkowska, Paulina
dc.contributor.authorCichy, Ireneusz
dc.contributor.authorIgnasiak, Zofia
dc.contributor.authorKochan, Katarzyna
dc.contributor.authorKociuba, Marek
dc.contributor.authorKozieł, Sławomir
dc.contributor.authorSebastjan, Anna
dc.contributor.authorŚciślak, Marcin
dc.contributor.authorŻądzińska, Elżbieta
dc.contributor.authorRokita, Andrzej
dc.date.accessioned2024-07-25T10:40:31Z
dc.date.available2024-07-25T10:40:31Z
dc.date.issued2024-07-02
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/52900
dc.description.abstractThe expression of circulating microRNAs appears to be a promising indicator of physical strength. The objective of this study was to determine whether there is an association between the expression level of four selected microRNAs and body composition over time among young female volleyball players. Blood samples and body composition measurements were taken from 7 females who are Polish volleyball players before and after 5 matches played out between the years 2017 and 2018. The blood spots were used to assess the expression of four microRNAs: miR-320, miR-182, miR-223, and miR-486. Fat mass, PFB% and BMI were positively correlated with expression level (exp.l) of miR-182. The miR-320 the exp.l was positively correlated with muscle mass and TBW. There were inverse correlations between miR-486 exp.l and PBF%, as well as between miR-486 exp.l and body mass, muscle mass, TBW, FFM, and BMR. Conversely, there were positive correlations between miR-486 exp.l and body mass and fat mass. The miR-182 may be positively correlated with fat tissue, miR-320 was positively correlated with muscle mass, and miR-486 was negatively correlated with fat mass. Overall, our study shows that the expression of miR-182, miR-320, and miR-486 is associated with body composition. The results of our study also suggest that exercise may decrease the level of miR-486.The authors are grateful for the support of the Laboratory of Microscopic Imaging and Specialized Biological Techniques of the University of Lodz.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectbody compositionen
dc.subjectmicroRNAen
dc.subjectepigeneticen
dc.subjectvolleyballen
dc.titleAssociation between expression level of the miR-320, miR-182, miR-223 and miR-486 and body composition among young Polish female volleyball playersen
dc.typeArticle
dc.page.number147-158
dc.contributor.authorAffiliationPruszkowska, Paulina - University of Łódź, Faculty of Biology and Environmental Protection, Department of Anthropology, Polanden
dc.contributor.authorAffiliationCichy, Ireneusz - Wroclaw University of Health and Sport Sciences, Department of Team Sport Games, Polanden
dc.contributor.authorAffiliationIgnasiak, Zofia - Wroclaw University of Health and Sport Sciences, Department of Biostructure, Polanden
dc.contributor.authorAffiliationKochan, Katarzyna - Wroclaw University of Health and Sport Sciences, Department of Biostructure, Polanden
dc.contributor.authorAffiliationKociuba, Marek - Military University of Land Forces, Department of Physical Education and Sport, Wrocław, Polanden
dc.contributor.authorAffiliationKozieł, Sławomir - Hirszfeld Institute of Immunology and Experimental Therapy, Department of Anthropology; Polish Academy of Sciences, Wrocław, Polanden
dc.contributor.authorAffiliationSebastjan, Anna - Wroclaw University of Health and Sport Sciences, Department of Biostructure, Polanden
dc.contributor.authorAffiliationŚciślak, Marcin - Wroclaw University of Health and Sport Sciences, Department of Team Sport Games, Polanden
dc.contributor.authorAffiliationŻądzińska, Elżbieta - University of Łódź, Faculty of Biology and Environmental Protection, Department of Anthropology, Poland; The University of Adelaide, School of Medicine, Biological Anthropology and Comparative Anatomy Research Unit, South Australia, Australiaen
dc.contributor.authorAffiliationRokita, Andrzej - Wroclaw University of Health and Sport Sciences, Department of Team Sport Games, Polanden
dc.identifier.eissn2083-4594
dc.referencesAoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y, Yoshikawa T. 2013. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Frontiers in Physiology 4:80. https://doi.org/10.3389/fphys.2013.00080en
dc.referencesBarreiro E, Sancho-Muñoz A, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, Gea, J. 2019. Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia. Journal of Applied Physiology 126(2): 403–412. https://doi.org/10.1152/japplphysiol.00611.2018en
dc.referencesChumlea WC, Guo SS, Zeller CM, Reo NV, Siervogel RM. 1999. Total body water data for white adults 18 to 64 years of age: the Fels Longitudinal Study. Kidney International 56:244–252. https://doi.org/10.1046/j.1523-1755.1999.00532.xen
dc.referencesDi Pietro V, Ragusa M, Davies D, Su Z, Hazeldine J, Lazzarino G. et al. 2017. MicroRNAs as Novel Biomarkers for the Diagnosis and Prognosis of Mild and Severe Traumatic Brain Injury. Neurotrauma 34(11):1948–1956. https://doi.org/10.1089/neu.2016.4857en
dc.referencesGoljanek-Whysall K, Soriano-Arroquia A, McCormick R, Chinda C, McDonaghet B. 2020. miR-181a Regulates p62/SQSTM1, Parkin and Protein DJ-1 Promoting Mitochondrial Dynamics in Skeletal Muscle Ageing. Aging Cell 19:13140. https://doi.org/10.1111/acel.13140en
dc.referencesGroßhans H, Filipowicz W. 2008. Molecular biology: the expanding world of small RNAs. Nature 451(7177):414–416. https://doi.org/10.1038/451414aen
dc.referencesJung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, Jung K. 2010. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clinical Chemistry 56(6):998–1006. https://doi.org/10.1373/clinchem.2009.141580en
dc.referencesJung HJ, Suh Y. 2015. Regulation of IGF-1 signaling by microRNAs. Frontiers in Genetics 5:472. https://doi.org/10.3389/fgene.2014.00472en
dc.referencesLivak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262en
dc.referencesMcCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. 2009. Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological Genomics 39:219–226. https://doi.org/10.1152/physiolgenomics.00042.2009en
dc.referencesMcCrae JC, Sharkey N, Webb DJ, Vliegenthart AD, Dea JW (2016). Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clinical Toxicology, 54(1), 53–55. https://doi.org/10.3109/15563650.2015.1112015en
dc.referencesMunetsuna E, Yamada H, Ando Y, Yamazaki M, Tsuboi Y, Kondo M, et al. 2018. Association of subcutaneous and visceral fat with circulating microRNAs in a middle-aged Japanese population. Annals of Clinical Biochemistry 55(4):437–445. https://doi.org/10.1177/0004563217735124en
dc.referencesNielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, Layeet M. 2010. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. Journal of Physiology 588:4029–4037. https://doi.org/10.1113/jphysiol.2010.189860en
dc.referencesOlivieri F, Ahtiainen M, Lazzarini R, Pöllänen E, Capri M, Lorenzi M. et al. 2014. Hormone replacement therapy enhances IGF‐1 signaling in skeletal muscle by diminishing miR‐182 and miR‐223 expressions: a study on postmenopausal monozygotic twin pairs. Aging Cell 13(5):850–861. https://doi.org/10.1111/acel.12245en
dc.referencesPrats-Puig A, Ortega FJ, Mercader JM, Moreno-Navarrete JM, Moreno M, Bonet, et al. 2013. Changes in circulating microRNAs are associated with childhood obesity. Journal of Clinical Endocrinology & Metabolism 98(10):1655–1660. https://doi.org/10.1210/jc.2013-1496en
dc.referencesSafdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA, Lucia A. 2009. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS ONE 4:e5610. https://doi.org/10.1371/journal.pone.0005610en
dc.referencesSkonieczka K, Styczyński J, Krenska A, Wysocki M, Jakubowska A, Grzybowski T. 2016. RNA isolation from bloodstains collected on FTA cards–application in clinical and forensic genetics. Archiwum Medycyny Sądowej i Kryminologii / Archives of Forensic Medicine and Criminology 66(4):244–254. https://doi.org/10.5114/amsik.2016.66706en
dc.referencesSmall EM, O’Rourke JR, Moresi V, Sutherland LB, McAnally J, Gerard RD, et al. 2010. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. PNAS USA 107:4218–4223. https://doi.org/10.1073/pnas.1000300107en
dc.referencesSong CL, Liu B, Diao HY, Shi YF, Zhang JC, Li YX, et al. 2016. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 7(26):39740–39757. https://doi.org/10.18632/oncotarget.9240en
dc.referencesSong J, Saeman MR, Baer LA, Cai AR, Wade ChE, Wolf SE. 2017. Exercise altered the skeletal muscle microRNAs and gene expression profiles in burn rats with hindlimb unloading. Journal of Burn Care & Research 38:11–19. https://doi.org/10.1097/BCR.0000000000000444en
dc.referencesSvingos AM, Asken BM, Bauer RM, DeKosky ST, Hromas GA, Jaffee MS, et al. 2019. Exploratory study of sport-related concussion effects on peripheral micro-RNA expression. Brain Injury 33(4):1–7. https://doi.org/10.1080/02699052.2019.1573379en
dc.referencesWang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. 2009. MicroRNA‐320 expression in myocardial microvascular endothelial cells and its relationship with insulin‐like growth factor‐1 in type 2 diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36(2):181–188. https://doi.org/10.1111/j.1440-1681.2008.05057.xen
dc.referencesWoo I, Christenson LK, Gunewardena S, Ingles SA, Thomas S, Ahmadyet A, et al. 2018. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. Journal of Assisted Reproduction and Genetics 35(10):1777–1786. https://doi.org/10.1007/s10815-018-1239-9en
dc.referencesZampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. 2010. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation Research 107(6):810–817. https://doi.org/10.1161/circresaha.110.226357en
dc.referencesZhang D, Li Y, Yao X, Wang H, Zhao L. et al. 2016. miR-182 regulates metabolic homeostasis by modulating glucose utilization in muscle. Cell Reports 16(3):757–768. https://doi.org/10.1016/j.celrep.2016.06.040en
dc.referencesYerlikaya FH, Mehmet Ö. 2019. Aberrant expression of miRNA profiles in high-fat and high-sucrose fed rats. Clinical Nutrition Experimental 27:1–8. https://doi.org/10.1016/j.yclnex.2019.07.001en
dc.contributor.authorEmailPruszkowska, Paulina - paulina.pruszkowska@biol.uni.lodz.pl
dc.contributor.authorEmailCichy, Ireneusz - ireneusz.cichy@awf.wroc.pl
dc.contributor.authorEmailIgnasiak, Zofia - zofia.ignasiak@awf.wroc.pl
dc.contributor.authorEmailKochan, Katarzyna - katarzyna.kochan-jachec@awf.wroc.pl
dc.contributor.authorEmailKociuba, Marek - marekkociuba@wp.pl
dc.contributor.authorEmailKozieł, Sławomir - slawomir.koziel@hirszfeld.pl
dc.contributor.authorEmailSebastjan, Anna - anna.sebastjan@awf.wroc.pl
dc.contributor.authorEmailŚciślak, Marcin - marcin.scislak@awf.wroc.pl
dc.contributor.authorEmailŻądzińska, Elżbieta - elzbieta.zadzinska@biol.uni.lodz.pl
dc.contributor.authorEmailRokita, Andrzej - andrzej.rokita@awf.wroc.pl
dc.identifier.doi10.18778/1898-6773.87.2.08
dc.relation.volume87


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0