dc.contributor.author | Boudníková, Olga | |
dc.contributor.author | Kleisner, Karel | |
dc.date.accessioned | 2024-06-04T07:53:05Z | |
dc.date.available | 2024-06-04T07:53:05Z | |
dc.date.issued | 2024-06-03 | |
dc.identifier.issn | 1898-6773 | |
dc.identifier.uri | http://hdl.handle.net/11089/52295 | |
dc.description.abstract | Some recent studies suggest that artificial intelligence can create realistic human faces subjectively unrecognizable from faces of real people. We have compared static facial photographs of 197 real men with a sample of 200 male faces generated by artificial intelligence to test whether they converge in basic morphological characteristic such as shape variation and bilateral asymmetry. Both datasets depicted standardized faces of European men with a neutral expression. Then we used geometric morphometrics to investigate their facial morphology and calculate the measures of shape variation and asymmetry. We found that the natural faces of real individuals were more variable in their facial shape than the artificially generated faces were. Moreover, the artificially synthesized faces showed lower levels of facial asymmetry than the control group. Despite the rapid development of generative adversarial networks, natural faces are thus still statistically distinguishable from the artificial ones by objective measurements. We recommend the researchers in face perception, that aim to use artificially generated faces as ecologically valid stimuli, to check whether their stimuli morphological variance is comparable with that of natural faces in a target population. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Anthropological Review;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | geometric morphometrics | en |
dc.subject | GAN | en |
dc.subject | artificial intelligence | en |
dc.subject | human face | en |
dc.subject | morphology | en |
dc.subject | symmetry | en |
dc.title | AI-generated faces show lower morphological diversity than real faces do | en |
dc.type | Article | |
dc.page.number | 81-91 | |
dc.contributor.authorAffiliation | Boudníková, Olga - Charles University, Faculty of Science, Department of Philosophy and History of Science | en |
dc.contributor.authorAffiliation | Kleisner, Karel - Charles University, Faculty of Science, Department of Philosophy and History of Science | en |
dc.identifier.eissn | 2083-4594 | |
dc.references | Adams DC, Otárola-Castillo E. 2013. Geomorph: An r Package for the Collection and Analysis of Geometric Morphometric Shape Data. Methods in Ecology and Evolution 4(4):393–99. https://doi.org/10.1111/2041-210X.12035 | en |
dc.references | Adams D, Collyer M, Kaliontzopoulou A, Baken E. 2023. Geomorph: Geometric Morphometric Analyses of 2D and 3D Landmark Data. Available at: https://cran.r-project.org/web/packages/geomorph/geomorph.pdf | en |
dc.references | Anantrasirichai N, Bull D. 2022. Artificial Intelligence in the Creative Industries: A Review. Artificial Intelligence Review 55(1):589–656. https://doi.org/10.1007/s10462-021-10039-7 | en |
dc.references | Baken E, Collyer M, Kaliontzopoulou A, Adams D. 2021. Geomorph v4.0 and gmShiny: Enhanced Analytics and a New Graphical Interface for a Comprehensive Morphometric Experience. Methods in Ecology and Evolution 12. https://doi.org/10.1111/2041-210x.13723 | en |
dc.references | Bray SD, Johnson SD, Kleinberg B. 2023. Testing Human Ability to Detect “Deepfake” Images of Human Faces. Journal of Cybersecurity 9(1):tyad011. https://doi.org/10.1093/cybsec/tyad011 | en |
dc.references | Cetinic E, She J. 2022. Understanding and Creating Art with AI: Review and Outlook. ACM Transactions on Multimedia Computing, Communications, and Applications 18(2):66:1-66:22. https://doi.org/10.1145/3475799 | en |
dc.references | Courset R, Rougier M, Palluel-Germain R, Smeding A, Manto Jonte J, Chauvin A, et al. 2018. The Caucasian and North African French Faces (CaNAFF): A Face Database. 31(1):22. https://doi.org/10.5334/irsp.179 | en |
dc.references | Geller Tom. 2008. Overcoming the Uncanny Valley. IEEE Computer Graphics and Applications 28(4):11–17. https://doi.org/10.1109/MCG.2008.79 | en |
dc.references | Karras T, Laine S, Aila T. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. Available at: https://openaccess.thecvf.com/content_CVPR_2019/papers/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.pdf | en |
dc.references | Kleisner K. 2021. Morphological Uniqueness: The Concept and Its Relationship to Indicators of Biological Quality of Human Faces from Equatorial Africa. Symmetry 13(12):2408. https://doi.org/10.3390/sym13122408 | en |
dc.references | Kleisner K, Pokorný Š, Saribay SA. 2019. Toward a New Approach to Cross-Cultural Distinctiveness and Typicality of Human Faces: The Cross-Group Typicality/Distinctiveness Metric. Frontiers in Psychology 10. https://doi.org/10.3389/fpsyg.2019.00124 | en |
dc.references | Kleisner K, Tureček P, Roberts SC, Havlíček J, Valentova JV, Akoko RB, et al. 2021. How and Why Patterns of Sexual Dimorphism in Human Faces Vary across the World. Scientific Reports 11(1):5978. https://doi.org/10.1038/s41598-021-85402-3 | en |
dc.references | Kleisner K, Tureček P, Saribay S, Pavlovič O, Leongómez J, Roberts S, et al. 2023. Distinctiveness and Femininity, Rather than Symmetry and Masculinity, Affect Facial Attractiveness across the World. Evolution and Human Behavior. https://doi.org/10.1016/j.evolhumbehav.2023.10.001 | en |
dc.references | Lago F, Pasquini C, Böhme R, Dumont H, Goffaux V, Boato G. 2022. More Real Than Real: A Study on Human Visual Perception of Synthetic Faces [Applications Corner]. IEEE Signal Processing Magazine 39(1):109–16. https://doi.org/10.1109/MSP.2021.3120982 | en |
dc.references | Lakshmi A, Wittenbrink B, Correll J, Ma DS. 2021. The India Face Set: International and Cultural Boundaries Impact Face Impressions and Perceptions of Category Membership. Frontiers in Psychology 12. https://doi.org/10.3389/fpsyg.2021.627678 | en |
dc.references | Liefooghe B, Oliveira M, Leisten LM, Hoogers E, Aarts H, Hortensius R. 2023. Are Natural Faces Merely Labelled as Artificial Trusted Less? Collabra: Psychology 9(1):73066. https://doi.org/10.1525/collabra.73066 | en |
dc.references | Linke LS, Saribay A, Kleisner K. 2016. Perceived Trustworthiness Is Associated with Position in a Corporate Hierarchy. Personality and Individual Differences 99:22–27. https://doi.org/10.1016/j.paid.2016.04.076 | en |
dc.references | Ma DS, Correll J, Wittenbrink B. 2015. The Chicago Face Database: A Free Stimulus Set of Faces and Norming Data. Behavior Research Methods 47(4):1122–35. https://doi.org/10.3758/s13428-014-0532-5 | en |
dc.references | Marcus G, Davis E, Aaronson S. 2022. A Very Preliminary Analysis of DALL-E 2. Available at: https://www.researchgate.net/publication/360311114_A_very_preliminary_analysis_of_DALL-E_2 | en |
dc.references | Miller EJ, Steward BA, Witkower Z, Sutherland CAM, Krumhuber EG, Dawel A. 2023. AI Hyperrealism: Why AI Faces Are Perceived as More Real Than Human Ones. Psychological Science 34(12):1390–1403. https://doi.org/10.1177/09567976231207095 | en |
dc.references | Moshel ML, Robinson AK, Carlson TA, Grootswagers T. 2022. Are You for Real? Decoding Realistic AI-Generated Faces from Neural Activity. Vision Research 199:108079. https://doi.org/10.1016/j.visres.2022.108079 | en |
dc.references | Mustak M, Salminen J, Mäntymäki M, Rahman A, Dwivedi YK. 2023. Deepfakes: Deceptions, Mitigations, and Opportunities. Journal of Business Research 154:113368. https://doi.org/10.1016/j.jbusres.2022.113368 | en |
dc.references | Nightingale SJ, Farid H. 2022. AI-Synthesized Faces Are Indistinguishable from Real Faces and More Trustworthy. Proceedings of the National Academy of Sciences 119(8):e2120481119. https://doi.org/10.1073/pnas.2120481119 | en |
dc.references | Pasquini C, Laiti F, Lobba D, Ambrosi G, Boato G, De Natale F. 2023. Identifying Synthetic Faces through GAN Inversion and Biometric Traits Analysis. Applied Sciences 13(2):816. https://doi.org/10.3390/app13020816 | en |
dc.references | Rossi S, Kwon Y, Auglend OH, Mukkamala RR, Rossi M, Thatcher J. 2022. Are Deep Learning-Generated Social Media Profiles Indistinguishable from Real Profiles? Available at: https://www.researchgate.net/publication/363584758_Are_Deep_Learning-Generated_Social_Media_Profiles_Indistinguishable_from_Real_Profiles | en |
dc.references | Saribay SA, Biten AF, Meral EO, Aldan P, Třebický V, Kleisner K. 2018. The Bogazici Face Database: Standardized Photographs of Turkish Faces with Supporting Materials. PLOS ONE 13(2):e0192018. https://doi.org/10.1371/journal.pone.0192018. | en |
dc.references | Schlager S. 2017. Chapter 9 – Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations. In: G. Zheng, S. Li, and G. Székely. Statistical Shape and Deformation Analysis. Academic Press. Pp. 217–56. | en |
dc.references | Sofer C, Dotsch R, Wigboldus DHJ, Todorov A. 2015. What Is Typical Is Good: The Influence of Face Typicality on Perceived Trustworthiness. Psychological Science 26(1):39–47. https://doi.org/10.1177/0956797614554955 | en |
dc.references | Tucciarelli R, Vehar N, Chandaria S, Tsakiris M. 2022. On the Realness of People Who Do Not Exist: The Social Processing of Artificial Faces. iScience 25(12):105441. https://doi.org/10.1016/j.isci.2022.105441 | en |
dc.references | Wong AD. 2022. BLADERUNNER: Rapid Countermeasure for Synthetic (AI-Generated) StyleGAN Faces. https://doi.org/10.48550/arXiv.2210.06587 | en |
dc.contributor.authorEmail | Boudníková, Olga - olga.budnik@natur.cuni.cz | |
dc.contributor.authorEmail | Kleisner, Karel - karel.kleisner@natur.cuni.cz | |
dc.identifier.doi | 10.18778/1898-6773.87.1.06 | |
dc.relation.volume | 87 | |