Pokaż uproszczony rekord

dc.contributor.authorLisowska-Gaczorek, Aleksandra
dc.contributor.authorCienkosz-Stepańczak, Beata
dc.contributor.authorFurmanek, Mirosław
dc.contributor.authorSzostek, Krzysztof
dc.date.accessioned2023-10-24T11:23:59Z
dc.date.available2023-10-24T11:23:59Z
dc.date.issued2023-10-10
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/48156
dc.description.abstractResearch using stable isotopes for the reconstruction of breastfeeding strategies are based on assumptions that have not yet been verified by experimental studies. Interpreting the results of isotope analysis is associated with a certain degree of uncertainty, mainly due to the lack of information on how isotopes are distributed in mothers, breast-fed and weaned offspring. Culinary practices also can affect the interpretation of isotope results.Considering positive correlation between oxygen isotope composition of drinking water and bone phosphates, experimental studies were carried out using rats as an animal model. The experiment showed that apatites of breast-fed offspring were enriched 1.6‰ in comparison to the values observed in their mothers. In the boiled water model, the difference was 1.8‰. On the basis of the animal model, it was estimated that the difference in 18O between mother and child in the human species may amount to approximately 2.7‰, and long-term intake of boiled liquid food and beverages will not compensate the difference.The experiment allowed observation of the effect of changes in isotope ratios to a change in trophic levels during breastfeeding and weaning, as well as the additional effect associated with the consumption of isotope enriched water during thermal treatment.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectoxygen isotopesen
dc.subjectbreastfeedingen
dc.subjectweaning of ancient populationen
dc.subjectanimal modelen
dc.subjectbioarchaeologyen
dc.titleA new perspectives on breastfeeding practice reconstruction in bioarchaeology – an oxygen isotopes study in an animal modelen
dc.typeArticle
dc.page.number129-159
dc.contributor.authorAffiliationLisowska-Gaczorek, Aleksandra - Institute of Biological Sciences, Cardinal Wyszyński University in Warsaw, Polanden
dc.contributor.authorAffiliationCienkosz-Stepańczak, Beata - Institute of Zoology and Biomedical Research, Polanden
dc.contributor.authorAffiliationFurmanek, Mirosław - Institute of Archaeology, University of Wroclaw, Polanden
dc.contributor.authorAffiliationSzostek, Krzysztof - Institute of Biological Sciences, Cardinal Wyszyński University in Warsaw, Polanden
dc.identifier.eissn2083-4594
dc.referencesAbeni F, Petrera F, Capelletti M, Dal Prà A, Bontempo L, Tonon A, et al. 2015. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS ONE 10(5):e0127391. https://doi.org/10.1371/journal.pone.0127391en
dc.referencesArnay-De-La-Rosa M, González-Reimers E, Yanes Y, Velasco-Vázquez J, Romanek CS, Noakes JE. 2010. Paleodietary analysis of the prehistoric population of the Canary Islands inferred from stable isotopes (carbon, nitrogen and hydrogen) in bone collagen. J Archaeol Sci 37(7):1490–501. https://doi.org/10.1016/j.jas.2010.01.009en
dc.referencesBeaumont J. 2020. The whole tooth and nothing but the tooth: Or why temporal resolution of bone collagen may be unreliable. Archaeometry 62(3):626–45. https://doi.org/10.1111/arcm.12544/v1/review1en
dc.referencesBeaumont J, Montgomery J, Buckberry J, Jay M. 2015. Infant mortality and isotopic complexity:New approaches to stress, maternal health, and weaning. Am J Phys Anthropol 157(3):441–57. https://doi.org/10.1002/ajpa.22736en
dc.referencesBrettell R, Montgomery J, Evans J. 2012. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. J Anal At Spectrom 27(5):778–85. https://doi.org/10.1039/c2ja10335den
dc.referencesBritton K, Fuller BT, Tütken T, Mays S, Richards MP. 2015. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. Am J Phys Anthropol 157(2):226–41. https://doi.org/10.1002/ajpa.22704en
dc.referencesBritton K, McManus‐Fry E, Cameron A, Duffy P, Masson‐MacLean E, Czére O, et al. 2018. Isotopes and new norms:Investigating the emergence of early modern UK breastfeeding practices at St. Nicholas Kirk, Aberdeen. Int J Osteoarchaeol 28(5):510–22. https://doi.org/10.1002/oa.2678en
dc.referencesBryant DJ, Froelich PN. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta 59(21):4523–37. https://doi. org/10.1016/0016-7037(95)00250-4en
dc.referencesBudd P, Montgomery J, Barreiro B Thomas RG. 2000. Differential diagenesis of strontium in archaeological human dental tissues. Appl Geochem 15(5):687–94. https://doi. org/10.1016/s0883-2927(99)00069-4en
dc.referencesBurt NM. 2013. Stable isotope ratio analysis of breastfeeding and weaning practices of children from medieval Fishergate House York, UK. Am J Phys Anthropol 152(3):407–16. https://doi.org/10.1002/ajpa.22370en
dc.referencesCamin F, Perini M, Colombari G, Bontempo L, Versini G. 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk Rapid Commun Mass Spectrom 22(11):1690–6. https://doi.org/10.1002/rcm.3506en
dc.referencesChinique de Armas Y, Mavridou AM, Garcell Domínguez J, Hanson K, Laffoon J. 2022. Tracking breastfeeding and weaning practices in ancient populations by combining carbon, nitrogen and oxygen stable isotopes from multiple non-adult tissues. PLoS ONE 17(2):e0262435. https://doi.org/10.1371/journal.pone.0262435en
dc.referencesChinique de Armas Y, Pestle W. 2018. Assessing the association between subsistence strategies and the timing of weaning among indigenous archaeological populations of the Caribbean. Int J Osteoarchaeol 28(5):492–509. https://doi.org/10.1002/oa.2695en
dc.referencesChoy K, Richards MP. 2009. Stable isotope evidence of human diet at the Nukdo shell midden site, South Korea. J Archaeol Sci 36(7):1312–8. https://doi.org/10.1016/j. jas.2009.01.004en
dc.referencesCienkosz-Stepanczak B, Lisowska-Gaczorek A, Haduch E, Ellam R, Cook G, Kruk J, et al. 2017. Nitrogen and strontium isotopes as tools for the reconstruction of breastfeeding practices and human behavior – A neolithic collective grave in Bronocice (Poland). HOMO 65(2):115–30. https://doi.org/10.1016/j.jchb.2013.11.001en
dc.referencesCienkosz-Stepańczak B, Szostek K, Lisowska-Gaczorek A. 2021. Optimizing FTIR method for characterizing diagenetic alteration of skeletal material. J Archaeol Sci Reports 38:103059. https://doi.org/10.1016/j.jasrep.2021.103059en
dc.referencesCormie A, Schwarcz H, Gray J. 1994. Relation between hydrogen isotopic ratios of bone collagen and rain. Geochim Cosmochim Acta 58(1):377–91. https://doi.org/10.1016/0016-7037(94)90471-5en
dc.referencesCraig-Atkins E, Towers J, Beaumont J. 2018. The role of infant life histories in the construction of identities in death:An incremental isotope study of dietary and physiological status among children afforded differential burial. Am J Phys Anthropol 167(3):644–55. https://doi.org/10.1002/ajpa.23691en
dc.referencesCrowder KD, Montgomery J, Gröcke DR, Filipek KL. 2019. Childhood “stress” and stable isotope life histories in Transylvania Int J Osteoarchaeol 29(4):44–653. https://doi.org/10.1002/oa.2760en
dc.referencesD’Angela D, Longinelli A. 1990. Oxygen isotopes in living mammal’s bone phosphate: Further results. Chem Geol 86(1):75–82. https://doi.org/10.1016/0168-9622(90)90007-yen
dc.referencesD’Ortenzio L, Brickley M, Schwarcz H, Prowse T. 2015. You are not what you eat during physiological stress:Isotopic evaluation of human hair. Am J Phys Anthropol 157(3):374–88. https://doi.org/10.1002/ajpa.22722en
dc.referencesDailey-Chwalibóg T, Huneau JF, Mathé V, Kolsteren P, Mariotti F, Mostak M, et al. 2020. Weaning and stunting affect nitrogen and carbon stable isotope natural abundances in the hair of young children. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-59402-8en
dc.referencesDaux V, Lécuyer C, Héran MA, Amiot R, Simon L, Fourel F, et al. 2008. Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol 55(6):1138–47. https://doi.org/10.1016/j.jhevol.2008.06.006en
dc.referencesDe Luca A, Boisseau N, Tea I, Louvet I, Robins RJ, Forhan A, et al. 2012. δ15N and δ13C in hair from newborn infants and their mothers:a cohort study. Pediatr Res 71(5):598–604. https://doi.org/10.1038/pr.2012.3en
dc.referencesDepaermentier ML, Kempf M, Bánffy E, Alt KW. 2020. Tracing mobility patterns through the 6th–5th millennia BC in the Carpathian Basin with strontium and oxygen stable isotope analyses. PloS ONE 15(12):e0242745. https://doi.org/10.1371/journal.pone.0242745en
dc.referencesDettwyler KA. 2004. When to wean:biological versus cultural perspectives. Clin Obstet Gynaecol 47(3):712–23. https://doi.org/10.1097/01.grf.0000137217.97573.01en
dc.referencesDettwyler KA, Fishman C. 1992. Infant Feeding Practices and Growth. Annu Rev Anthropol 21(1):171–204. https://doi.org/10.1146/annurev.an.21.100192.001131en
dc.referencesDiTomasso D, Paiva AL. 2018. Neonatal weight matters:An examination of weight changes in full-term breastfeeding newborns during the first 2 weeks of life. J Hum Lact 34(1):86–92. https://doi.org/10.1177/0890334417722508en
dc.referencesDudás FÖ, LeBlanc SA, Carter SW, Bowring SA. 2016. Pb and Sr concentrations and isotopic compositions in prehistoric North American teeth:A methodological study. Chem Geol 429:21–32. https://doi.org/10.1016/j.chemgeo.2016.03.003en
dc.referencesDupras TL, Schwarcz HP. 2001. Strangers in a strange land:Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. J Archaeol Sci 28(11):1199–208. https://doi.org/10.1006/jasc.2001.0640en
dc.referencesDupras TL, Schwarcz HP, Fairgrieve SI. 2001. Infant feeding and weaning practices in Roman Egypt Am J Phys Anthropol 115(3):204–12. https://doi.org/10.1002/ajpa.1075en
dc.referencesDupras TL, Tocheri MW. 2007. Reconstructing infant weaning histories at Roman period Kellis, Egypt using stable isotope analysis of dentition. Am J Phys Anthropol 134(1):63– 74. https://doi.org/10.1002/ajpa.20639en
dc.referencesEerkens JW, de Voogt A, Dupras TL, Francigny V, Greenwald AM. 2018. Early childhood diets on the Nile:δ13C and δ15N in serial samples of permanent first molars in an elite Meroitic population from Sai Island, Sudan. Int J Osteoarchaeol 28(5):552–62. https://doi.org/10.1002/oa.2679en
dc.referencesEvans JA, Chenery CA, Fitzpatrick AP. 2006. Bronze Age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48(2):309–21. https://doi.org/10.1111/j.1475-4754.2006.00258.xen
dc.referencesFildes VA. 1986. Breasts, Bottles and Babies: A History of Infant Feeding. Edinburgh: Edinburgh University Press. https://doi.org/10.1177/0890334487003004en
dc.referencesFogel ML, Tuross N, Owsley DW. 1989. Nitrogen isotope tracers of human lactation in modern and archaeological populations. In:Carnegie Institution of Washington 1988–1989. Annual Report of the Director, Geophysical Laboratory. Washington. 111–17.en
dc.referencesFuller BT, Fuller JL, Harris DA, Hedges REM. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am J Phys Anthropo 129(2):279–93. https://doi.org/10.1002/ajpa.20249en
dc.referencesFuller BT, Richards MP, Mays SA. 2003. Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. J Archaeol Sci 30(12):1673–84. https://doi.org/10.1016/s0305-4403(03)00073-6en
dc.referencesGregorčič SH, Potočnik D, Camin F, Ogrinc N. 2020. Milk authentication:Stable isotope composition of hydrogen and oxygen in milks and their constituents. Molecules 25(17):4000. https://doi.org/10.3390/molecules25174000en
dc.referencesHarris OJ, Cobb H, Batey CE, Montgomery J, Beaumont J, Gray H, et al. 2017. Assembling places and persons:a tenth-century Viking boat burial from Swordle Bay on the Ardnamurchan peninsula, western Scotland. Antiq. 91(355):191–206. https://doi.org/10.15184/aqy.2016.222en
dc.referencesHedges RE. 2002. Bone diagenesis: an overview of processes. Archaeometry 44(3):319–28. https://doi.org/10.1111/1475-4754.00064en
dc.referencesHerrscher E, Goude G, Metz L. 2017. Longitudinal study of stable isotope compositions of maternal milk and implications for the palaeodiet of infants. Bull. Mem. Soc. Anthropol. Paris 29(3-4):131–9. https://doi.org/10.1007/s13219-017-0190-4en
dc.referencesHollund HI, Arts N, Jans MME, Kars H. 2015. Are teeth better? Histological characterization of diagenesis in archaeological bonetooth pairs and a discussion of the consequences for archaeometric sample selection and analyses. Int J Osteoarchaeol 25(6):901–11. https://doi.org/10.1002/oa.2376en
dc.referencesIAEA 2010. Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants, IAEA Human Health Series No.7, Vienna, Austriaen
dc.referencesIacumin P, Bocherens H, Mariotti A, Longinelli A. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite:a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142(1–2):1–6. https://doi.org/10.1016/0012-821x(96)00093-3en
dc.referencesJay M, Fuller BT, Richards MP, Knüsel CJ, King SS. 2008. Iron Age breastfeeding practices in Britain:Isotopic evidence from Wetwang Slack, East Yorkshire. Am J Phys Anthropol 136(3):327–37. https://doi.org/10.1002/ajpa.20815en
dc.referencesJheon AH, Seidel K, Biehs B, Klein OD. 2013. From molecules to mastication: The development and evolution of teeth. Wiley Interdiscip Rev Dev Biol 2(2):165–83. https://doi.org/10.1002/wdev.63en
dc.referencesKatzenberg M. 1996. Weaning and in fant mortality:evaluating the skeletal evidence. Am J Phys Anthropol 39:177–99. https://doi.org/10.1002/(sici)1096-8644(1996)23+3.0.co;2-2en
dc.referencesKatzenberg MA. 1999. A re-examination of factors contributing to elevated stable nitrogen isotope values in infants and young children. In Am. J. Phys. Anthropol. Div John Wiley Sons Inc, 605 Third Ave, New York, NY 10158-0012 USA:Wiley-Liss. 165.en
dc.referencesKendall C, Eriksen AMH, Kontopoulos I, Collins MJ, Turner-Walker G. 2018. Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491:21–37. https://doi.org/10.1016/j.palaeo.2017.11.041en
dc.referencesKing CL, Halcrow SE, Millard AR, Gröcke DR, Standen VG, Portilla M, et al. 2018. Let’s talk about stress, baby! Infant‐feeding practices and stress in the ancient Atacama desert, Northern Chile. Am J Phys Anthropol 166(1):139–55. https://doi.org/10.1002/ajpa.23411en
dc.referencesKnudson KJ, Torres‐Rouff C. 2009. Investigating cultural heterogeneity in San Pedro de Atacama, northern Chile, through biogeochemistry and bioarchaeology. Am J Phys Anthropol 138(4):473–85. https://doi.org/10.1002/ajpa.20965en
dc.referencesKornexl BE, Werner T, Roßmann A, Schmidt HL. 1997. Measurement of stable isotope abundances in milk and milk ingredients – a possible tool for origin assignment and quality control. Z Lebensm Unters Forsch 205(1):19–24. https://doi.org/10.1007/s002170050117en
dc.referencesKrenz-Niedbała M. 2016. Did Children in Medieval and Post-medieval Poland Suffer from Scurvy? Examination of the Skeletal Evidence. Int J Osteoarchaeol 26(4):633–47. https://doi.org/10.1002/oa.2454en
dc.referencesKwok CS, Garvie‐Lok S, Katzenberg MA. 2018. Exploring variation in infant feed-ing practices in byzantine Greece using stable isotope analysis of dentin serial sections. Int J Osteoarchaeol 28(5):563–578. https://doi.org/10.1002/oa.2690en
dc.referencesLee PC. 1996. The meanings of weaning:growth, lactation, and life history. Evol Anthropol 5(3):87–98. https://doi.org/10.1002/(sici)1520-6505(1996)5:33.0.co;2-ten
dc.referencesLee‐Thorp J, Sponheimer M. 2006. Contributions of biogeochemistry to understanding hominin dietary ecology. Am J Phys Anthropol 131(S43):131–48. https://doi.org/10.1002/ajpa.20519en
dc.referencesLeichliter JN, Lüdecke T, Foreman AD, Duprey NN, Winkler DE, Kast ER, et al. 2021. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment:results from a controlled feeding experiment. Chem Geol 563:120047. https://doi.org/10.1016/j.chemgeo.2020.120047en
dc.referencesLeach S, Eckardt H, Chenery C, Müldner G, Lewis M. 2010. A Lady of York:migration, ethnicity and identity in Roman Britain. Antiq 84(323):131–45. https://doi.org/10.1017/s0003598x00099816en
dc.referencesLécuyer C, Grandjean P, Paris F, Robardet M, Robineau D. 1996. Deciphering “temperature” and “salinity” from biogenic phosphates:the δ18O of coexisting fishes and mammals of the Middle Miocene sea of western France. Palaeogeogr Palaeoclimatol Palaeoecol 126(1–2):61–74. https://doi.org/10.1016/s0031-0182(96)00070-3en
dc.referencesLewis M E. 2007. The bioarchaeology of children:perspectives from biological and forensic anthropology (Vol. 50). Cambridge University Press https://doi.org/10.1017/cbo9780511542473en
dc.referencesLin GP, Rau YH, Chen YF, Chou CC, Fu WG. 2003. Measurements of δD and δ18O Stable Isotope Ratios in Milk. J Food Sci 68(7):2192–5. https://doi.org/10.1111/j.1365-2621.2003.tb05745.xen
dc.referencesLisowska-Gaczorek A, Kozieł S, Cienkosz-Stepańczak B, Mądrzyk K, Pawlyta J, Gronkiewicz S, et al. 2016. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes. HOMO 67(4):313–27. https://doi.org/10.1016/j.jchb.2016.05.001en
dc.referencesLisowska-Gaczorek A, Szostek K, Pawlyta J, Cienkosz-Stepańczak B. 2020. Oxygen isotopic fractionation in rat bones as a result of consuming thermally processed water – bioarchaeological applications. Geochronometria 47(1):1–12. https://doi.org/10.2478/geochr-2020-0001en
dc.referencesLoponte D, Mazza B. 2021. Breastfeeding and weaning in Late Holocene hunter‐gatherers of the lower Paraná wetland, South America. Am J Phys Anthropol 176(3):504–20. https://doi.org/10.1002/ajpa.24381en
dc.referencesLuz B, Kolodny Y. 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth Planet Sci Lett (751):29–36. https://doi.org/10.1016/0012-821x(85)90047-0en
dc.referencesMcClure SB, Zavodny E, Novak M, Balen J, Potrebica H, Janković I, et al. 2020. Paleodiet and health in a mass burial population:The stable carbon and nitrogen isotopes from Potočani, a 6,200‐year‐old massacre site in Croatia. Int J Osteoarchaeol 30(4):507–18. https://doi.org/10.1002/oa.2878en
dc.referencesMetcalfe JZ, Longstaffe FJ, Zazula GD. 2010. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yu-kon, Canada:implications for Pleistocene extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 298 (3-4):257–70. https://doi.org/10.1016/j.palaeo.2010.09.032en
dc.referencesMiller MJ, Dong Y, Pechenkina K, Fan W, Halcrow SE. 2020. Raising girls and boys in early China: Stable isotope data reveal sex differences in weaning and childhood diets during the eastern Zhou era. Am J Phys Anthropol 172(4):567–85. https://doi.org/10.1002/ajpa.24033en
dc.referencesMontgomery J. 2010. Passports from the past:Investigating human dispersals using strontium isotope analysis of tooth enamel. Ann Hum Biol 37(3):325–46. https://doi.org/10.3109/03014461003649297en
dc.referencesO’Neil JR, Roe LJ, Reinhard E, Blake RE. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences 1:203–12.en
dc.referencesOlszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. 2007. Bone structure and formation: A new perspective. Mater Sci Eng R Rep 58(3-5):77–116. https://doi.org/10.1016/j.mser.2007.05.001en
dc.referencesOsipowicz G, Witas H, Lisowska-Gaczorek A, Reitsema L, Szostek K, Płoszaj T, et al. 2017. Origin of the ornamented bâton percé from the Gołębiewo site 47 as a trigger of discussion on long-distance exchange among Early Mesolithic communities of Central Poland and Northern Europe. PLoS ONE 12(10):e0184560. https://doi.org/10.1371/journal.pone.0184560en
dc.referencesPerry MA, Provan M, Tykot RH, Appleton LM, Lieurance AJ. 2020. Using dental enamel to uncover the impact of childhood diet on mortality in Petra, Jordan. J Archaeol Sci Reports 29:102181. https://doi.org/10.1016/j.jasrep.2019.102181en
dc.referencesPrice TD, Spicuzza MJ, Orland IJ, Valley JW. 2019. Instrumental investigation of oxygen isotopes in human dental enamel from the Bronze Age battlefield site at Tollense, Germany. J Archaeol Sci 105:70–80. https://doi.org/10.1016/j.jas.2019.03.003en
dc.referencesPrice TD, Burton JH, Sharer RJ, Buikstra JE, Wright LE, Traxler LP, et al. 2010. Kings and commoners at Copan:Isotopic evidence for origins and movement in the Classic Maya period. J Anthropol Archaeol 29(1):15–32. https://doi.org/10.1016/j.jaa.2009.10.001en
dc.referencesRoberts HR, Pettinati JD, Bucek W. 1954. A Comparative Study of Human, Cow, Sow, and Rat Milk Using Paper Chromatography. J Dairy Sci 37(5):538–45. https://doi.org/10.3168/jds.s0022-0302(54)91295-3en
dc.referencesRoberts SB, Coward WA, Ewing G, Savage J, Cole TJ, Lucas A. 1988. Effect of weaning on accuracy of doubly labeled water method in infants. Am J Physiol Regul Integr Comp Physiol 254(4):R622-R27. https://doi.org/10.1152/ajpregu.1988.254.4.r622en
dc.referencesRoyer A, Daux V, Fourel F, Lécuyer C. 2017. Carbon, nitrogen and oxygen isotope fractionation during food cooking:Implications for the interpretation of the fossil human record. Am J Phys Anthropol 163(4):759–71. https://doi.org/10.1002/ajpa.23246en
dc.referencesRyan SE, Reynard LM, Pompianu E, Van Dommelen P, Murgia C, Subirà ME, et al. 2020. Growing up in Ancient Sardinia:Infant-toddler dietary changes revealed by the novel use of hydrogen isotopes (δ2H). PloS ONE 15(7):e0235080. https://doi.org/10.1371/journal.pone.0235080en
dc.referencesScharlotta I, Goude G, Herrscher E, Bazaliiskii VI, Weber AW. 2018. Shifting weaning practices in Early Neolithic Cis‐Baikal, Siberia:New insights from stable isotope analysis of molar micro‐samples. Int J Osteoarchaeol 28(5):579–98. https://doi.org/10.1002/oa.2708en
dc.referencesSchoeninger MJ. 1985. Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. J Hum Evol 14(5):515–25. https://doi.org/10.1016/s0047-2484(85)80030-0en
dc.referencesSchurr MR. 1997. Stable Nitrogen Isotopes as Evidence for the Age of Weaning at the Angel Site:A Comparison of Isotopic and Demographic Measures of Weaning Age. J Archaeol Sci 24(10):919–27. https://doi.org/10.1006/jasc.1996.0171en
dc.referencesSchurr MR. 2018. Exploring ideas about isotopic variation in breastfeeding and weaning within and between populations: Case studies from the American midcontinent. Int J Osteoarchaeol 28(5):479–91. https://doi.org/10.1002/oa.2698en
dc.referencesSchwarcz HP, Schoeninger MJ. 2012. Stable isotopes of carbon and nitrogen as tracers for paleo-diet reconstruction. In:M Baskaran, editor. Handbook of environmental isotope geochemistry. Springer, Berlin, Heidelberg. 725–742. https://doi.org/10.1007/978-3-642-10637-8_34.en
dc.referencesSimpson R, Cooper DM, Swanston T, Coulthard I, Varney TL. 2021. Historical overview and new directions in bioarchaeological trace element analysis:a review. Archaeol Anthropol Sci 13(1):1–27. https://doi.org/10.1007/s12520-020-01262-4en
dc.referencesSmith TM, Austin C, Ávila JN, Dirks W, Green DR, Williams IS, et al. 2022. Permanent signatures of birth and nursing initiation are chemically recorded in teeth. J Archaeol Sci 140:105564. https://doi.org/10.1016/j.jas.2022.105564en
dc.referencesSmith CE, Warshawsky H. 1975. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H‐thymidine. Anat Rec 183(4):523–61. https://doi.org/10.1002/ar.1091830405en
dc.referencesStantis C, Schutkowski H, Sołtysiak A. 2020. Reconstructing breastfeeding and weaning practices in the Bronze Age Near East using stable nitrogen isotopes. Am J Phys Anthropol 172(1):58–69. https://doi.org/10.1002/ajpa.23980en
dc.referencesSzostek K. 2009. Chemical signals and reconstruction of life strategies from ancient human bones and teeth-problems and perspectives. Anthropol Rev 72(1):3–30. https://doi.org/10.2478/v10044-008-0013-5en
dc.referencesTomczyk J, Regulski P, Lisowska-Gaczorek A, Szostek K. 2020a. Dental caries and stable isotopes analyses in the reconstruction of diet in Mesolithic (6815–5900 BC) Individuals from Northeastern Poland. J Archaeol Sci:Reports 29:102141. https://doi.org/10.1016/j.jasrep.2019.102141en
dc.referencesTomczyk J, Szostek K, Lisowska‐Gaczorek A, Jelec P, Trzeciecki M, Zalewska M, et al. 2021. Dental caries and breastfeeding in early childhood in the late Medieval and Modern populations from Radom, Poland. Int J Osteoarchaeol 31(6):1169–79. https://doi.org/10.1002/oa.3028en
dc.referencesTomczyk J, Szostek K, Lisowska‐Gaczorek A, Mnich B, Zalewska M, Trzeciecki M, et al. 2020b. Dental caries and isotope studies in the population of Radom (Poland) between the 11th and 19th centuries. Int J Osteoarchaeol 30(6):778–88. https://doi.org/10.1002/oa.2908en
dc.referencesTsutaya T, Yoneda M. 2013. Quantitative Reconstruction of Weaning Ages in Archaeological Human Populations Using Bone Collagen Nitrogen Isotope Ratios and Approximate Bayesian Computation. PLoS ONE 8(8):e72327. https://doi.org/10.1371/journal.pone.0072327en
dc.referencesTsutaya T, Yoneda M. 2015. Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses:A review. Am J Phys Anthropol 156:2–21. https://doi.org/10.1002/ajpa.22657en
dc.referencesTurner BL. 2021. Residential moblity in the Inka sacred valley:Oxygen, strontium, and lead isotopic analysis at Patallaqta, Peru. J Archaeol Sci:Reports 37:102930. https://doi.org/10.1016/j.jasrep.2021.102930en
dc.referencesTuross N, Reynard LM, Harvey E, Coppa A, McCormick M. 2017. Human skeletal development and feeding behavior:the impact on oxygen isotopes. Archaeol Anthropol Sci 9(7):1453–59. https://doi.org/10.1007/s12520-017-0486-5en
dc.referencesTütken T, Vennemann TW, Janz H, and Heizmann EPJ. 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany:A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeogr Palaeoclimatol Palaeoecol 241(3-4):457–91. https://doi.org/10.1016/j.palaeo.2006.04.007en
dc.referencesUstrzycka A. 2019. Spektrometria mas lekkich izotopów stabilnych w badaniach ekosystemu jeziornego. Gliwice: Politechnika Śląska; Katowice: Uniwersytet Śląski.en
dc.referencesValenzuela LO, O’Grady SP, Ehleringer JR. 2021. Variations in human body water isotope composition across the United States. Forensic Sci Int 327:110990. https://doi.org/10.1016/j.forsciint.2021.110990en
dc.referencesVander Zanden HB, Soto DX, Bowen GJ, Hobson KA. 2016. Expanding the isotopic toolbox: applications of hydrogen and oxygen stable isotope ratios to food web studies. Front Ecol Evol 4(20):1–19. https://doi.org/10.3389/fevo.2016.00020en
dc.referencesVennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A. 2002. Oxygen iso-tope analysis of phosphates:a comparison of techniques for analysis of Ag3PO4. Chem Geol 185(3–4):321–36. https://doi.org/10.1016/s0009-2541(01)00413-2en
dc.referencesVerna C, Dalstra M, Melsen B. 2003. Bone turnover rate in rats does not influence root resorption induced by orthodontic treatment. Eur J Orthod 25(4):359–63. https://doi.org/10.1093/ejo/25.4.359en
dc.referencesWhite C, Longstaffe FJ, Law KR. 2004a. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. J Archaeol Sci 31(2):233–250. https://doi.org/10.1016/j.jas.2003.08.007en
dc.referencesWhite CD, Spence MW, Longstaffe FJ, Law KR. 2004b. Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan:The evidence from stable oxygen isotopes. J Anthropol Archaeol 23(4):385–403. https://doi.org/10.1016/j.jaa.2004.08.002en
dc.referencesWHO Programme of Nutrition. (1998). Complementary feeding of young children in developing countries :a review of curent scientific knowledge.[e-book] World Health Organization. Available through WHO website: https://apps.who.int/iris/handle/10665/65932 [Accessed 1 February 2023].en
dc.referencesWilliams JS, White CD, Longstaffe FJ. 2005. Trophic level and macronutrient shift effects associated with the weaning process in the postclassic maya. Am J Phys Anthropol 128(4):781–90. https://doi.org/10.1002/ajpa.20229en
dc.referencesWopenka B, Pasteris JD. 2005. A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25(2):131–43. https://doi.org/10.1016/j.msec.2005.01.008en
dc.referencesWright LE, Schwarcz HP 1998. Stable carbon and oxygen isotopes in human tooth enamel:Identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol 106(1):1–18. https://doi.org/10.1002/(sici)1096-8644(199805)106:13.0.co;2-wen
dc.referencesWright LE, Schwarcz HP. 1999. Correspondence Between Stable Carbon, Oxygen and Nitrogen Isotopes in Human Tooth Enamel and Dentine:Infant Diets at Kaminaljuyú. J Archaeol Sci 26:1159–70. https://doi.org/10.1006/jasc.1998.0351en
dc.contributor.authorEmailLisowska-Gaczorek, Aleksandra - a.lisowska-gaczorek@uksw.edu.pl
dc.contributor.authorEmailCienkosz-Stepańczak, Beata - b.stepanczak@uj.edu.pl
dc.contributor.authorEmailFurmanek, Mirosław - miroslaw.furmanek@uwr.edu.pl
dc.contributor.authorEmailSzostek, Krzysztof - k.szostek@uksw.edu.pl
dc.identifier.doi10.18778/1898-6773.86.3.08
dc.relation.volume86


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0