Show simple item record

dc.contributor.authorBodzioch, Agnieszka
dc.contributor.authorPietrzak, Anna
dc.contributor.authorKaszynski, Piotr
dc.date.accessioned2023-09-04T13:20:02Z
dc.date.available2023-09-04T13:20:02Z
dc.date.issued2021-09-17
dc.identifier.citationOrg. Lett. 2021, 23, 19, 7508–7512pl_PL
dc.identifier.issn1523-7060
dc.identifier.urihttp://hdl.handle.net/11089/47855
dc.description.abstractAtropisomers of three Blatter radicals were obtainedby the addition of 8-substituted 1-naphthyllithiums to 3-phenyl and3-t-butylbenzo[e][1,2,4]triazine and separated by chiral high-performance liquid chromatography. Their absolute configurationswere assigned by a comparison of experimental and time-dependent density functional theory calculated electronic circulardichroism spectra. The free energy of activation,ΔG‡298, and thehalf life of racemization,t1/2, at 298 K were determined at∼25 kcal mol−1and <130 h, respectively. Intramolecularπ−πinteractionsin radicals were evident from single-crystal X-ray diffraction, density functional theory, and electrochemical analyses.pl_PL
dc.description.sponsorshipThis work was supported by the Foundation for Polish Science(TEAM/2016-3/24) and National Science Centre (2020/38/A/ST4/00597 and 2019/03/X/ST4/01147) grants. We thankProf. Piotr Chmielewski (Wrocław University) for assistancewith ECD measurements.pl_PL
dc.language.isoenpl_PL
dc.publisherAmerican Chemical Societypl_PL
dc.relation.ispartofseriesOrganic Letters;
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAromatic compoundspl_PL
dc.subjectHydrocarbonspl_PL
dc.subjectKinetic parameterspl_PL
dc.subjectMolecular structurepl_PL
dc.subjectReaction productspl_PL
dc.titleAxially Chiral Stable Radicals: Resolution and Characterization ofBlatter Radical Atropisomerspl_PL
dc.typeArticlepl_PL
dc.page.number7508–7512pl_PL
dc.contributor.authorAffiliationCentre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łodź , Polandpl_PL
dc.contributor.authorAffiliationDepartment of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United Statespl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, University of Łodź , 91-403 ́ Łodź , Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Łodź University of Technology, 90-924 Łodź , Polandpl_PL
dc.identifier.eissn1523-7052
dc.referencesJi, L.; Shi, J.; Wei, J.; Yu, T.; Huang, W. Air-stable organic radicals: New-generation materials for flexible electronics? Adv. Mater. 2020, 32, 1908015.pl_PL
dc.referencesFriebe, C.; Schubert, U. S. High-Power-Density Organic Radical Batteries. In Electrochemical Energy Storage: Next Generation Battery Concepts; Eichel, R.-A., Ed.; Springer: Cham, Switzerland, 2019; pp 65− 99.pl_PL
dc.referencesWilcox, D. A.; Agarkar, V.; Mukherjee, S.; Boudouris, B. W. Stable radical materials for energy applications. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 83−103.pl_PL
dc.referencesAqil, A.; Vlad, A.; Piedboeuf, M.-L.; Aqil, M.; Job, N.; Melinte, S.; Detrembleur, C.; Jérôme, C. A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chem. Commun. 2015, 51, 9301−9304.pl_PL
dc.referencesHudson, J. M.; Hele, T. J. H.; Evans, E. W. Efficient light-emitting diodes from organic radicals with doublet emission. J. Appl. Phys. 2021, 129, 180901.pl_PL
dc.referencesCui, Z.; Abdurahman, A.; Ai, X.; Li, F. Stable luminescent radicals and radical-based LEDs with doublet emission. CCS Chem. 2020, 2, 1129−1145.pl_PL
dc.referencesPeng, Q.; Obolda, A.; Zhang, M.; Li, F. Organic light-emitting diodes using a neutral π radical as emitter: The emission from a doublet. Angew. Chem., Int. Ed. 2015, 54, 7091−7095.pl_PL
dc.referencesAi, X.; Evans, E. W.; Dong, S.; Gillett, A. J.; Guo, H.; Chen, Y.; Hele, T. J. H.; Friend, R. H.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536−540.pl_PL
dc.referencesNaaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263−281.pl_PL
dc.referencesGeyer, M.; Gutierrez, R.; Mujica, V.; Cuniberti, G. Chiralityinduced spin selectivity in a coarse-grained tight-binding model for helicene. J. Phys. Chem. C 2019, 123, 27230−27241.pl_PL
dc.referencesGöhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894−897.pl_PL
dc.referencesKiran, V.; Mathew, S. P.; Cohen, S. R.; Hernández-Delgado, I.; Lacour, J.; Naaman, R. HelicenesA new class of organic spin filter. Adv. Mater. 2016, 28, 1957−1962.pl_PL
dc.referencesde Jong, M. P. Recent progress in organic spintronics. Open Phys. 2016, 14, 337−353.pl_PL
dc.referencesSanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336−3355.pl_PL
dc.referencesSanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336−3355.pl_PL
dc.referencesMas-Torrent, M.; Crivillers, N.; Mugnaini, V.; Ratera, I.; Rovira, C.; Veciana, J. Organic radicals on surfaces: Towards molecular spintronics. J. Mater. Chem. 2009, 19, 1691−1695.pl_PL
dc.referencesCasu, M. B. Nanoscale studies of organic radicals: Surface, interface, and spinterface. Acc. Chem. Res. 2018, 51, 753−760.pl_PL
dc.referencesRikken, G. L. J. A.; Raupach, E. Observation of magneto-chiral dichroism. Nature 1997, 390, 493−494.pl_PL
dc.referencesTrain, C.; Gruselle, M.; Verdaguer, M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets. Chem. Soc. Rev. 2011, 40, 3297−3312.pl_PL
dc.referencesMinguet, M.; Luneau, D.; Lhotel, E.; Villar, V.; Paulsen, C.; Amabilino, D. B.; Veciana, J. An enantiopure molecular ferromagnet. Angew. Chem., Int. Ed. 2002, 41, 586−589.pl_PL
dc.referencesInoue, K.; Ohkoshi, S.-i.; Imai, H. Chiral Molecule-Based Magnets In Magnetism: Molecules to Materials V; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp 41−70.pl_PL
dc.referencesMayorga Burrezo, P.; Jimenez, V. G.; Blasi, D.; Ratera, I.; Campana, A. G.; Veciana, J. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem., Int. Ed. 2019, 58, 16282−16288.pl_PL
dc.referencesPop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G. L. J. A.; Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 2014, 5, 3757.pl_PL
dc.referencesRugg, B. K.; Krzyaniak, M. D.; Phelan, B. T.; Ratner, M. A.; Young, R. M.; Wasielewski, M. R. Photodriven quantum teleportation of an electron spin state in a covalent donor-acceptor-radical system. Nat. Chem. 2019, 11, 981−986.pl_PL
dc.referencesZak, J. K.; Miyasaka, M.; Rajca, S.; Lapkowski, M.; Rajca, A. Radical cation of helical, cross-conjugated β-oligothiophene. J. Am. Chem. Soc. 2010, 132, 3246−3247.pl_PL
dc.referencesGliemann, B. D.; Petrovic, A. G.; Zolnhofer, E. M.; Dral, P. D.; Hampel, F.; Breitenbruch, G.; Schulze, P.; Raghavan, V.; Meyer, K.; Polavarapu, P. L.; Berova, N.; Kivala, M. Configurationally stable chiral dithia-bridged hetero[4]helicene radical cation: Electronic structure and absolute configuration. Chem. - Asian J. 2017, 12, 31−35.pl_PL
dc.referencesShu, C.; Zhang, H.; Olankitwanit, A.; Rajca, S.; Rajca, A. Highspin diradical dication of chiral π-conjugated double helical molecule. J. Am. Chem. Soc. 2019, 141, 17287−17294.pl_PL
dc.referencesKasemthaveechok, S.; Abella, L.; Jean, M.; Cordier, M.; Roisnel, T.; Vanthuyne, N.; Guizouarn, T.; Cador, O.; Autschbach, J.; Crassous, J.; Favereau, L. Axially and helically chiral cationic radical bicarbazoles: SOMO−HOMO level inversion and chirality impact on the stability of mono- and diradical cations. J. Am. Chem. Soc. 2020, 142, 20409− 20418.pl_PL
dc.referencesUeda, A.; Wasa, H.; Suzuki, S.; Okada, K.; Sato, K.; Takui, T.; Morita, Y. Chiral stable phenalenyl radical: Synthesis, electronic-spin structure, and optical properties of [4]helicene-structured diazaphenalenyl. Angew. Chem., Int. Ed. 2012, 51, 6691−6695.pl_PL
dc.referencesWang, Y.; Zhang, H.; Pink, M.; Olankitwanit, A.; Rajca, S.; Rajca, A. Radical cation and neutral radical of aza-thia[7]helicene with SOMO−HOMO energy level inversion. J. Am. Chem. Soc. 2016, 138, 7298−7304.pl_PL
dc.referencesRavat, P.; Ribar, P.; Rickhaus, M.; Haussinger, D.; Neuburger, M.; Juricek, M. Spin-delocalization in a helical open-shell hydrocarbon. J. Org. Chem. 2016, 81, 12303−12317.pl_PL
dc.referencesKato, K.; Furukawa, K.; Mori, T.; Osuka, A. Porphyrin-based airstable helical radicals. Chem. - Eur. J. 2018, 24, 572−575.pl_PL
dc.referencesShaikh, A. C.; Moutet, J.; Veleta, J. M.; Hossain, M. M.; Bloch, J.; Astashkin, A. V.; Gianetti, T. A. Persistent, highly localized, and tunable [4]helicene radicals. Chem. Sci. 2020, 11, 11060−11067.pl_PL
dc.referencesTani, F.; Narita, M.; Murafuji, T. Helicene radicals: Molecules bearing a combination of helical chirality and unpaired electron spin. ChemPlusChem 2020, 85, 2093−2104.pl_PL
dc.referencesConstantinides, C. P.; Koutentis, P. A.; Loizou, G. Synthesis of 7- aryl/heteraryl-1,3-diphenyl-1,2,4-benzotriazinyls via palladium catalyzed Stille and Suzuki-Miyaura reactions. Org. Biomol. Chem. 2011, 9, 3122−3125.pl_PL
dc.referencesBodzioch, A.; Zheng, M.; Kaszynski, P.; Utecht, G. Functional group transformations in derivatives of 1,4-dihydrobenzo[1,2,4]- triazinyl radical. J. Org. Chem. 2014, 79, 7294−7310.pl_PL
dc.referencesBerezin, A. A.; Constantinides, C. P.; Mirallai, S. I.; Manoli, M.; Cao, L. L.; Rawson, J. M.; Koutentis, P. A. Synthesis and properties of imidazolo-fused benzotriazinyl radicals. Org. Biomol. Chem. 2013, 11, 6780−6795.pl_PL
dc.referencesRogers, F. J. M.; Norcott, P. L.; Coote, M. L. Recent advances in the chemistry of benzo[e][1,2,4]triazinyl radicals. Org. Biomol. Chem. 2020, 18, 8255−8277.pl_PL
dc.referencesBerezin, A. A.; Zissimou, G.; Constantinides, C. P.; Beldjoudi, Y.; Rawson, J. M.; Koutentis, P. A. Route to benzo- and pyrido-fused 1,2,4- triazinyl radicals via N′-(het)aryl-N′-[2-nitro(het)aryl]hydrazides. J. Org. Chem. 2014, 79, 314−327.pl_PL
dc.referencesSavva, A. C.; Mirallai, S. I.; Zissimou, G. A.; Berezin, A. A.; Demetriades, M.; Kourtellaris, A.; Constantinides, C. P.; Nicolaides, C.; Trypiniotis, T.; Koutentis, P. A. Preparation of Blatter radicals via aza- Wittig chemistry: The reaction of N-aryliminophosphoranes with 1- (het)aroyl-2-aryldiazenes. J. Org. Chem. 2017, 82, 7564−7575.pl_PL
dc.referencesJi, Y.; Long, L.; Zheng, Y. Recent advances of stable Blatter radicals: synthesis, properties and applications. Mater. Chem. Front. 2020, 4, 3433−3443.pl_PL
dc.referencesConstantinides, C. P.; Koutentis, P. K.; Krassos, H.; Rawson, J. M.; Tasiopoulos, A. J. Characterization and magnetic properties of a “super stable” radical 1,3-diphenyl-7-trifluoromethyl-1,4-dihydro-1,2,4- benzotriazin-4-yl. J. Org. Chem. 2011, 76, 2798−2806.pl_PL
dc.referencesConstantinides, C. P.; Obijalska, E.; Kaszyński, P. Access to 1,4- dihydrobenzo[e][1,2,4]triazin-4-yl derivatives. Org. Lett. 2016, 18, 916−919.pl_PL
dc.referencesConstantinides, C. P.; Koutentis, P. A.; Rawson, J. M. Ferromagnetic interactions in a 1D alternating linear chain of π- stacked 1,3-diphenyl-7-(thien-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4- yl radicals. Chem. - Eur. J. 2012, 18, 7109−7116. (44) Gardias, A.; Kaszyński, P.; Obijalska, Epl_PL
dc.referencesGardias, A.; Kaszyński, P.; Obijalska, E.; Trzybiński, D.; Domagała, S.; Woźniak, K.; Szczytko, J. Magnetostructural investigation of orthogonal 1-aryl-3-phenyl-1,4-dihydrobenzo[e][1,2,4]- triazin-4-yl derivatives. Chem. - Eur. J. 2018, 24, 1317−1329.pl_PL
dc.referencesKarecla, G.; Papagiorgis, P.; Panagi, N.; Zissimou, G. A.; Constantinides, C. P.; Koutentis, P. A.; Itskos, G.; Hayes, S. C. Emission from the stable Blatter radical. New J. Chem. 2017, 41, 8604−8613.pl_PL
dc.referencesConnelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877−910.pl_PL
dc.referencesConnelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877−910.pl_PL
dc.referencesReist, M.; Testa, B.; Carrupt, P.-A.; Jung, M.; Schurig, V. Racemization, enantiomerization, diastereomerization, and epimerization: Their meaning and pharmacological significance. Chirality 1995, 7, 396−400.pl_PL
dc.identifier.doi10.1021/acs.orglett.1c02733
dc.relation.volume23pl_PL
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe