Pokaż uproszczony rekord

dc.contributor.authorKruczkowska, Weronika
dc.contributor.authorKciuk, Mateusz
dc.contributor.authorPasieka, Zbigniew
dc.contributor.authorKłosiński, Karol
dc.contributor.authorPłuciennik, Elżbieta
dc.contributor.authorElmer, Jacob
dc.contributor.authorWaszczykowska, Klaudia
dc.contributor.authorKołat, Damian
dc.contributor.authorKałuzińska-Kołat, Żaneta
dc.date.accessioned2023-08-10T12:16:55Z
dc.date.available2023-08-10T12:16:55Z
dc.date.issued2023
dc.identifier.citationKruczkowska Weronika, Kciuk Mateusz, Pasieka Zbigniew, Kłosiński Karol, Płuciennik Elżbieta, Elmer Jacob, Waszczykowska Klaudia, Kołat Damian, Kałuzińska-Kołat Żaneta: The artificial oxygen carrier erythrocruorin— characteristics and potential significance in medicine, Journal of Molecular Medicine-Jmm, vol. 101, nr 8, 2023, s. 961-972, DOI:10.1007/s00109-023- 02350-3pl_PL
dc.identifier.issn0946-2716
dc.identifier.urihttp://hdl.handle.net/11089/47769
dc.description.abstractThe diminishing supply and increasing costs of donated blood have motivated research into novel hemoglobin-based oxygen carriers (HBOCs) that can serve as red blood cell (RBC) substitutes. HBOCs are versatile agents that can be used in the treatment of hemorrhagic shock. However, many of the RBC substitutes that are based on mammalian hemoglobins have presented key limitations such as instability and toxicity. In contrast, erythrocruorins (Ecs) are other types of HBOCs that may not suffer these disadvantages. Ecs are giant metalloproteins found in annelids, crustaceans, and some other invertebrates. Thus far, the Ecs of Lumbricus terrestris (LtEc) and Arenicola marina (AmEc) are the most thoroughly studied. Based on data from preclinical transfusion studies, it was found that these compounds not only efficiently transport oxygen and have anti-inflammatory properties, but also can be modified to further increase their effectiveness. This literature review focuses on the structure, properties, and application of Ecs, as well as their advantages over other HBOCs. Development of methods for both the stabilization and purification of erythrocruorin could confer to enhanced access to artificial blood resources.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesJournal of Molecular Medicine;101
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectErythrocruorinpl_PL
dc.subjectHemoglobinpl_PL
dc.subjectArtificial oxygen carrierspl_PL
dc.subjectRed blood cell substitutespl_PL
dc.titleThe artificial oxygen carrier erythrocruorin—characteristics and potential significance in medicinepl_PL
dc.typeArticlepl_PL
dc.page.number961-972pl_PL
dc.contributor.authorAffiliationFaculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland; Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Functional Genomics, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Chemical and Biological Engineering, Villanova University, Villanova, PA, USApl_PL
dc.contributor.authorAffiliationDepartment of Functional Genomics, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Polandpl_PL
dc.identifier.eisbn1432-1440
dc.referencesMohanto N, Park YJ, Jee JP (2023) Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. J Pharm Investig 53:153–90. https://doi.org/10.1007/s40005-022-00590-ypl_PL
dc.referencesKhan F, Singh K, Friedman MT (2020) Artificial blood: the history and current perspectives of blood substitutes. Discoveries (Craiova) 8:e104. https://doi.org/10.15190/d.2020.1pl_PL
dc.referencesColl-Satue C, Bishnoi S, Chen J, Hosta-Rigau L (2021) Stepping stones to the future of haemoglobin-based blood products: clinical, preclinical and innovative examples. Biomater Sci 9:1135–52. https://doi.org/10.1039/d0bm01767apl_PL
dc.referencesLiu WJ, Chen YY, Hsu LI, Chen JW, Wei ST, Hou SM (2022) An imbalance in blood collection and demand is anticipated to occur in the near future in Taiwan. J Formos Med Assoc 121:1610–4. https://doi.org/10.1016/j.jfma.2021.07.027pl_PL
dc.referencesJansman MMT, Hosta-Rigau L (2018) Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 260:65–84. https://doi.org/10.1016/j.cis.2018.08.006pl_PL
dc.referencesReilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, Ramadan M, Luban NLC, Posnack NG (2020) Potential consequences of the red blood cell storage lesion on cardiac electrophysiology. J Am Heart Assoc 9:e017748. https://doi.org/10.1161/JAHA.120.017748pl_PL
dc.referencesSpahn DR (2018) Artificial oxygen carriers: a new future? Crit Care 22:46. https://doi.org/10.1186/s13054-018-1949-5pl_PL
dc.referencesMoradi S, Jahanian-Najafabadi A, Roudkenar MH (2016) Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord 9:33–41. https://doi.org/10.4137/CMBD.S38461pl_PL
dc.referencesMoore EE, Johnson JL, Cheng AM, Masuno T, Banerjee A (2005) Insights from studies of blood substitutes in trauma. Shock 24:197–205. https://doi.org/10.1097/01.shk.0000180075.76766.fepl_PL
dc.referencesBelcher DA, Lucas A, Cabrales P, Palmer AF (2020) Tumor vascular status controls oxygen delivery facilitated by infused polymerized hemoglobins with varying oxygen affinity. PLoS Comput Biol 16:e1008157. https://doi.org/10.1371/journal.pcbi.1008157pl_PL
dc.referencesMahboub P, Aburawi M, Karimian N, Lin F, Karabacak M, Fontan F, Tessier SN, Markmann J, Yeh H, Uygun K (2020) The efficacy of HBOC-201 in ex situ gradual rewarming kidney perfusion in a rat model. Artif Organs 44:81–90. https://doi.org/10.1111/aor.13534pl_PL
dc.referencesFontes P, Lopez R, van der Plaats A, Vodovotz Y, Minervini M, Scott V, Soltys K, Shiva S, Paranjpe S, Sadowsky D et al (2015) Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am J Transplant 15:381–94. https://doi.org/10.1111/ajt.12991pl_PL
dc.referencesCao M, Wang G, He H, Yue R, Zhao Y, Pan L, Huang W, Guo Y, Yin T, Ma L et al (2021) Hemoglobin-based oxygen carriers: potential applications in solid organ preservation. Front Pharmacol 12:760215. https://doi.org/10.3389/fphar.2021.760215pl_PL
dc.referencesSen Gupta A (2019) Hemoglobin-based oxygen carriers: current state-of-the-art and novel molecules. Shock 52:70–83. https://doi.org/10.1097/SHK.0000000000001009pl_PL
dc.referencesYu S (2022) Hemoglobin: physiology and hemoglobinopathy. Blood Substitutes and Oxygen Biotherapeutics 45-51pl_PL
dc.referencesBartz RR, Piantadosi CA (2010) Clinical review: oxygen as a signaling molecule. Crit Care 14:234. https://doi.org/10.1186/cc9185pl_PL
dc.referencesAscenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57:749–59. https://doi.org/10.1080/15216540500380871pl_PL
dc.referencesCherian VT (2022) Physiological functions of blood. Blood Substitutes and Oxygen Biotherapeutics 33-43pl_PL
dc.referencesStorz JF (2016) Gene Duplication and evolutionary innovations in hemoglobin-oxygen transport. Physiology (Bethesda) 31:223–32. https://doi.org/10.1152/physiol.00060.2015pl_PL
dc.referencesGoutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22:633–48. https://doi.org/10.1111/j.1472-8206.2008.00633.xpl_PL
dc.referencesStowell CP (2002) Hemoglobin-based oxygen carriers. Curr Opin Hematol 9:537–43. https://doi.org/10.1097/00062752-200211000-00013pl_PL
dc.referencesRiess JG (2001) Oxygen carriers (“blood substitutes”)–raison d’etre, chemistry, and some physiology. Chem Rev 101:2797–920. https://doi.org/10.1021/cr970143cpl_PL
dc.referencesDrvenica IT, Stancic AZ, Maslovaric IS, Trivanovic DI, Ilic VL (2022) Extracellular hemoglobin: modulation of cellular functions and pathophysiological effects. Biomolecules 12. https://doi.org/10.3390/biom12111708pl_PL
dc.referencesUmbreit J (2007) Methemoglobin–it’s not just blue: a concise review. Am J Hematol 82:134–44. https://doi.org/10.1002/ajh.20738pl_PL
dc.referencesZimmerman D, DiIusto M, Dienes J, Abdulmalik O, Elmer JJ (2017) Direct comparison of oligochaete erythrocruorins as potential blood substitutes. Bioeng Transl Med 2:212–21. https://doi.org/10.1002/btm2.10067pl_PL
dc.referencesWinterbourn CC (1985) Free-radical production and oxidative reactions of hemoglobin. Environ Health Perspect 64:321–30. https://doi.org/10.1289/ehp.8564321pl_PL
dc.referencesDorman SC, Kenny CF, Miller L, Hirsch RE, Harrington JP (2002) Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components. Artif Cells Blood Substit Immobil Biotechnol 30:39–51. https://doi.org/10.1081/bio-120002726pl_PL
dc.referencesZweier JL, Ilangovan G (2020) Regulation of nitric oxide metabolism and vascular tone by cytoglobin. Antioxid Redox Signal 32:1172–87. https://doi.org/10.1089/ars.2019.7881pl_PL
dc.referencesCabrales P, Friedman JM (2013) HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species. Antioxid Redox Signal 18:2284–97. https://doi.org/10.1089/ars.2012.5099pl_PL
dc.referencesKim HW, Greenburg AG (2013) Hemoglobin-based oxygen carriers as red cell substitutes and oxygen Therapeuticspl_PL
dc.referencesTsai AG, Cabrales P, Young MA, Winslow RM, Intaglietta M (2015) Effect of oxygenated polyethylene glycol decorated hemoglobin on microvascular diameter and functional capillary density in the transgenic mouse model of sickle cell anemia. Artif Cells Nanomed Biotechnol 43:10–7. https://doi.org/10.3109/21691401.2014.936063pl_PL
dc.referencesPortoro I, Mukli P, Kocsis L, Herman P, Caccia D, Perrella M, Mozzarelli A, Ronda L, Mathe D, Eke A (2020) Model-based evaluation of the microhemodynamic effects of PEGylated HBOC molecules in the rat brain cortex: a laser speckle imaging study. Biomed Opt Express 11:4150–75. https://doi.org/10.1364/BOE.388089pl_PL
dc.referencesKim HW, Greenburg AG (2004) Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Artif Organs 28:813–28. https://doi.org/10.1111/j.1525-1594.2004.07345.xpl_PL
dc.referencesFaggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A (2022) From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 84:101050. https://doi.org/10.1016/j.mam.2021.101050pl_PL
dc.referencesCooper CE, Silkstone GGA, Simons M, Gretton S, Rajagopal BS, Allen-Baume V, Syrett N, Shaik T, Popa G, Sheng X et al (2020) Engineering hemoglobin to enable homogenous PEGylation without modifying protein functionality. Biomater Sci 8:3896–906. https://doi.org/10.1039/c9bm01773apl_PL
dc.referencesBatool F, Delpy E, Zal F, Leize-Zal E, Huck O (2021) Therapeutic potential of hemoglobin derived from the marine worm Arenicola marina (M101): a literature review of a breakthrough innovation. Mar Drugs 19. https://doi.org/10.3390/md19070376pl_PL
dc.referencesSakai H, Tomiyama KI, Sou K, Takeoka S, Tsuchida E (2000) Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state. Bioconjug Chem 11:425–32. https://doi.org/10.1021/bc990173hpl_PL
dc.referencesPan D, Rogers S, Misra S, Vulugundam G, Gazdzinski L, Tsui A, Mistry N, Said A, Spinella P, Hare G et al (2016) Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results. Blood 128:1027. https://doi.org/10.1182/blood.V128.22.1027.1027pl_PL
dc.referencesArifin DR, Palmer AF (2005) Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromolecules 6:2172–81. https://doi.org/10.1021/bm0501454pl_PL
dc.referencesWong NS, Chang TM (2007) Polyhemoglobin-fibrinogen: a novel oxygen carrier with platelet-like properties in a hemodiluted setting. Artif Cells Blood Substit Immobil Biotechnol 35:481–9. https://doi.org/10.1080/10731190701586210pl_PL
dc.referencesCaretti A, Fantacci M, Caccia D, Perrella M, Lowe KC, Samaja M (2008) Modulation of the NO/cGMP pathway reduces the vasoconstriction induced by acellular and PEGylated haemoglobin. Biochim Biophys Acta 1784:1428–34. https://doi.org/10.1016/j.bbapap.2007.12.011pl_PL
dc.referencesOlofsson C, Ahl T, Johansson T, Larsson S, Nellgard P, Ponzer S, Fagrell B, Przybelski R, Keipert P, Winslow N et al (2006) A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology 105:1153–63. https://doi.org/10.1097/00000542-200612000-00015pl_PL
dc.referencesJahr JS, Akha AS, Holtby RJ (2012) Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products. Curr Drug Discov Technol 9:158–65. https://doi.org/10.2174/157016312802650742pl_PL
dc.referencesChen L, Yang Z, Liu H (2023) Hemoglobin-based oxygen carriers: where are we now in 2023? Medicina (Kaunas) 59. https://doi.org/10.3390/medicina59020396pl_PL
dc.referencesCoates CJ, Decker H (2017) Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 74:293–317. https://doi.org/10.1007/s00018-016-2326-7pl_PL
dc.referencesElmer J, Palmer AF (2012) Biophysical properties of lumbricus terrestris erythrocruorin and its potential use as a red blood cell substitute. J Funct Biomater 3:49–60. https://doi.org/10.3390/jfb3010049pl_PL
dc.referencesRoyer WE Jr, Omartian MN, Knapp JE (2007) Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein. J Mol Biol 365:226–36. https://doi.org/10.1016/j.jmb.2006.10.016pl_PL
dc.referencesStrand K, Knapp JE, Bhyravbhatla B, Royer WE Jr (2004) Crystal structure of the hemoglobin dodecamer from Lumbricus erythrocruorin: allosteric core of giant annelid respiratory complexes. J Mol Biol 344:119–34. https://doi.org/10.1016/j.jmb.2004.08.094pl_PL
dc.referencesJouan L, Marco S, Taveau JC (2003) Revisiting the structure of Alvinella pompejana hemoglobin at 20A resolution by cryoelectron microscopy. J Struct Biol 143:33–44. https://doi.org/10.1016/s1047-8477(03)00115-1pl_PL
dc.referencesRoyer WE Jr, Strand K, van Heel M, Hendrickson WA (2000) Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. Proc Natl Acad Sci U S A 97:7107–11. https://doi.org/10.1073/pnas.97.13.7107pl_PL
dc.referencesRoyer WE Jr, Sharma H, Strand K, Knapp JE, Bhyravbhatla B (2006) Lumbricus erythrocruorin at 3.5 A resolution: architecture of a megadalton respiratory complex. Structure 14:1167–77. https://doi.org/10.1016/j.str.2006.05.011pl_PL
dc.referencesToulmond A (1992) Properties and functions of extracellular heme pigments. blood and tissue oxygen carriers. Adv Comp Environ Physiol 231-56pl_PL
dc.referencesAsakura T, Sono M (1974) Optical and oxygen binding properties of spirographis, isospirographis, and 2,4-diformyl hemoglobins. J Biol Chem 249:7087–93pl_PL
dc.referencesSantiago PS, Moura F, Moreira LM, Domingues MM, Santos NC, Tabak M (2008) Dynamic light scattering and optical absorption spectroscopy study of pH and temperature stabilities of the extracellular hemoglobin of Glossoscolex paulistus. Biophys J 94:2228–40. https://doi.org/10.1529/biophysj.107.116780pl_PL
dc.referencesSavla C, Munoz C, Hickey R, Belicak M, Gilbert C, Cabrales P, Palmer AF (2020) Purification of Lumbricus terrestris mega-hemoglobin for diverse oxygen therapeutic applications. ACS Biomater Sci Eng 6:4957–68. https://doi.org/10.1021/acsbiomaterials.0c01146pl_PL
dc.referencesRoche CJ, Talwar A, Palmer AF, Cabrales P, Gerfen G, Friedman JM (2015) Evaluating the capacity to generate and preserve nitric oxide bioactivity in highly purified earthworm erythrocruorin: a giant polymeric hemoglobin with potential blood substitute properties. J Biol Chem 290:99–117. https://doi.org/10.1074/jbc.M114.583260pl_PL
dc.referencesGlorion M, Polard V, Favereau F, Hauet T, Zal F, Fadel E, Sage E (2018) Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO(2)life((R)) in pig lung transplantation model. Artif Cells Nanomed Biotechnol 46:1773–80. https://doi.org/10.1080/21691401.2017.1392315pl_PL
dc.referencesLemaire F, Sigrist S, Delpy E, Cherfan J, Peronet C, Zal F, Bouzakri K, Pinget M, Maillard E (2019) Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas. J Cell Mol Med 23:8025–34. https://doi.org/10.1111/jcmm.14666pl_PL
dc.referencesAlix P, Val-Laillet D, Turlin B, Ben Mosbah I, Burel A, Bobillier E, Bendavid C, Delpy E, Zal F, Corlu A et al (2020) Adding the oxygen carrier M101 to a cold-storage solution could be an alternative to HOPE for liver graft preservation. JHEP Rep 2:100119. https://doi.org/10.1016/j.jhepr.2020.100119pl_PL
dc.referencesVarney J, Rivera A, Dong V, Tieu P, Zia S, Huy NT (2021) Mini-review on the properties and possible applications of therapeutic oxygen carrier Hemarina-M101. Transfus Apher Sci 60:103016. https://doi.org/10.1016/j.transci.2020.103016pl_PL
dc.referencesLeung AF (1982) Calculation of the laser diffraction intensity of striated muscle by numerical methods. Comput Programs Biomed 15:169–74. https://doi.org/10.1016/0010-468x(82)90002-2pl_PL
dc.referencesHarnois T, Rousselot M, Rogniaux H, Zal F (2009) High-level production of recombinant Arenicola marina globin chains in Escherichia coli: a new generation of blood substitute. Artif Cells Blood Substit Immobil Biotechnol 37:106–16. https://doi.org/10.1080/10731190902908445pl_PL
dc.referencesLamy J, Kuchumov A, Taveau JC, Vinogradov SN, Lamy JN (2000) Reassembly of Lumbricus terrestris hemoglobin: a study by matrix-assisted laser desorption/ionization mass spectrometry and 3D reconstruction from frozen-hydrated specimens. J Mol Biol 298:633–47. https://doi.org/10.1006/jmbi.2000.3689pl_PL
dc.referencesKeeley N, Valdemarsen T, Strohmeier T, Pochon X, Dahlgren T, Bannister R (2020) Mixed-habitat assimilation of organic waste in coastal environments - it’s all about synergy. Sci Total Environ 699:134281. https://doi.org/10.1016/j.scitotenv.2019.134281pl_PL
dc.referencesRousselot M, Delpy E, Drieu La Rochelle C, Lagente V, Pirow R, Rees JF, Hagege A, Le Guen D, Hourdez S, Zal F (2006) Arenicola marina extracellular hemoglobin: a new promising blood substitute. Biotechnol J 1:333–45. https://doi.org/10.1002/biot.200500049pl_PL
dc.referencesRajesh A, Zimmerman D, Spivack K, Abdulmalik O, Elmer J (2018) Glutaraldehyde cross-linking increases the stability of Lumbricus terrestris erythrocruorin. Biotechnol Prog 34:521–8. https://doi.org/10.1002/btpr.2593pl_PL
dc.referencesSchmidt AE, Refaai MA, Blumberg N (2016) Past, present and forecast of transfusion medicine: what has changed and what is expected to change? Presse Med 45:e253-72. https://doi.org/10.1016/j.lpm.2016.06.017pl_PL
dc.referencesJani VP, Jelvani A, Moges S, Nacharaju P, Roche C, Dantsker D, Palmer A, Friedman JM, Cabrales P (2017) Polyethylene glycol camouflaged earthworm hemoglobin. PLoS One 12:e0170041. https://doi.org/10.1371/journal.pone.0170041pl_PL
dc.referencesJansman MMT, Coll-Satue C, Liu X, Kempen PJ, Andresen TL, Thulstrup PW, Hosta-Rigau L (2022) Hemoglobin-based oxygen carriers camouflaged with membranes extracted from red blood cells: optimization and assessment of functionality. Biomater Adv 134:112691. https://doi.org/10.1016/j.msec.2022.112691pl_PL
dc.referencesElmer J, Zorc K, Rameez S, Zhou Y, Cabrales P, Palmer AF (2012) Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration. Transfusion 52:1729–40. https://doi.org/10.1111/j.1537-2995.2011.03523.xpl_PL
dc.referencesMatsumoto M, Ra C, Kawamoto K, Sato H, Itakura A, Sawada J, Ushio H, Suto H, Mitsuishi K, Hikasa Y et al (1999) IgE hyperproduction through enhanced tyrosine phosphorylation of Janus kinase 3 in NC/Nga mice, a model for human atopic dermatitis. J Immunol 162:1056–63pl_PL
dc.referencesSavla C, Palmer AF (2021) Structural stability and biophysical properties of the mega-protein erythrocruorin are regulated by polyethylene glycol surface coverage. Biomacromolecules 22:2081–93. https://doi.org/10.1021/acs.biomac.1c00196pl_PL
dc.referencesTimm B, Abdulmalik O, Chakrabarti A, Elmer J (2020) Purification of Lumbricus terrestris erythrocruorin (LtEc) with anion exchange chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 1150:122162. https://doi.org/10.1016/j.jchromb.2020.122162pl_PL
dc.referencesWebb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC (2021) Influence of high hemoglobin-oxygen affinity on humans during hypoxia. Front Physiol 12:763933. https://doi.org/10.3389/fphys.2021.763933pl_PL
dc.referencesHuang YX, Wu ZJ, Huang BT, Luo M (2013) Pathway and mechanism of pH dependent human hemoglobin tetramer-dimer-monomer dissociations. PLoS One 8:e81708. https://doi.org/10.1371/journal.pone.0081708pl_PL
dc.referencesCabrales P, Han G, Nacharaju P, Friedman AJ, Friedman JM (2011) Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide. Am J Physiol Heart Circ Physiol 300:H49-56. https://doi.org/10.1152/ajpheart.00665.2010pl_PL
dc.referencesElmer J, Palmer AF, Cabrales P (2012) Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin. Life Sci 91:852–9. https://doi.org/10.1016/j.lfs.2012.08.036pl_PL
dc.referencesMuzzelo C, Neely C, Shah P, Abdulmalik O, Elmer J (2018) Prolonging the shelf life of Lumbricus terrestris erythrocruorin for use as a novel blood substitute. Artif Cells Nanomed Biotechnol 46:39–46. https://doi.org/10.1080/21691401.2017.1290645pl_PL
dc.referencesMackenzie CF, Dube GP, Pitman A, Zafirelis M (2019) Users guide to pitfalls and lessons learned about HBOC-201 during clinical trials, expanded access, and clinical use in 1,701 patients. Shock 52:92–9. https://doi.org/10.1097/SHK.0000000000001038pl_PL
dc.referencesOkamoto W, Hasegawa M, Usui T, Kashima T, Sakata S, Hamano T, Onozawa H, Hashimoto R, Iwazaki M, Kohno M et al (2022) Hemoglobin-albumin clusters as an artificial O(2) carrier: physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res B Appl Biomater 110:1827–38. https://doi.org/10.1002/jbm.b.35040pl_PL
dc.referencesHirsch RE, Jelicks LA, Wittenberg BA, Kaul DK, Shear HL, Harrington JP (1997) A first evaluation of the natural high molecular weight polymeric Lumbricus terrestris hemoglobin as an oxygen carrier. Artif Cells Blood Substit Immobil Biotechnol 25:429–44. https://doi.org/10.3109/10731199709118932pl_PL
dc.referencesHod EA, Zimring JC, Spitalnik SL (2008) Lessons learned from mouse models of hemolytic transfusion reactions. Curr Opin Hematol 15:601–5. https://doi.org/10.1097/MOH.0b013e328311f40apl_PL
dc.referencesBatool F, Stutz C, Petit C, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O (2020) A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 10:14745. https://doi.org/10.1038/s41598-020-71593-8pl_PL
dc.referencesLe Dare B, Ferron PJ, Bellamri N, Ribault C, Delpy E, Zal F, Lagente V, Gicquel T (2021) A therapeutic oxygen carrier isolated from Arenicola marina decreases amanitin-induced hepatotoxicity. Toxicon 200:87–91. https://doi.org/10.1016/j.toxicon.2021.07.004pl_PL
dc.referencesGicquel J (2022) Finistère: A CE-certified sanitary product made from sea worm blood. 20 Minutes France. https://www.20minutes.fr/sante/4003160-20220930-finistere-produit-sanitaire-base-sang-ver-marin-certifie. Accessed 05 January 2023.pl_PL
dc.referencesArancibia S, Del Campo M, Nova E, Salazar F, Becker MI (2012) Enhanced structural stability of Concholepas hemocyanin increases its immunogenicity and maintains its non-specific immunostimulatory effects. Eur J Immunol 42:688–99. https://doi.org/10.1002/eji.201142011pl_PL
dc.referencesGuncheva M, Paunova K, Ossowicz P, Rozwadowski Z, Janus E, Idakieva K, Todinova S, Raynova Y, Uzunova V, Apostolova S et al (2016) Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity. Int J Biol Macromol 82:798–805. https://doi.org/10.1016/j.ijbiomac.2015.10.031pl_PL
dc.referencesArancibia S, Espinoza C, Salazar F, Del Campo M, Tampe R, Zhong TY, De Ioannes P, Moltedo B, Ferreira J, Lavelle EC et al (2014) A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma. PLoS One 9:e87240. https://doi.org/10.1371/journal.pone.0087240pl_PL
dc.referencesToma VA, Farcas AD, Roman I, Sevastre B, Hathazi D, Scurtu F, Damian G, Silaghi-Dumitrescu R (2018) In vivo evaluation of hemerythrin-based oxygen carriers: similarities with hemoglobin-based counterparts. Int J Biol Macromol 107:1422–7. https://doi.org/10.1016/j.ijbiomac.2017.10.005pl_PL
dc.referencesHelms CC, Gladwin MT, Kim-Shapiro DB (2018) Erythrocytes and vascular function: oxygen and nitric oxide. Front Physiol 9:125. https://doi.org/10.3389/fphys.2018.00125pl_PL
dc.referencesKim-Shapiro DB, Schechter AN, Gladwin MT (2006) Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol 26:697–705. https://doi.org/10.1161/01.ATV.0000204350.44226.9apl_PL
dc.referencesAltszyler E, Ventura AC, Colman-Lerner A, Chernomoretz A (2017) Ultrasensitivity in signaling cascades revisited: linking local and global ultrasensitivity estimations. PLoS One 12:e0180083. https://doi.org/10.1371/journal.pone.0180083pl_PL
dc.referencesAlayash AI (2021) The impact of COVID-19 infection on oxygen homeostasis: a molecular perspective. Front Physiol 12:711976. https://doi.org/10.3389/fphys.2021.711976pl_PL
dc.referencesMeng F, Kassa T, Jana S, Wood F, Zhang X, Jia Y, D’Agnillo F, Alayash AI (2018) Comprehensive biochemical and biophysical characterization of hemoglobin-based oxygen carrier therapeutics: all HBOCs are not created equally. Bioconjug Chem 29:1560–75. https://doi.org/10.1021/acs.bioconjchem.8b00093pl_PL
dc.referencesSpivack K, Tucker M, Zimmerman D, Nicholas M, Abdulmalik O, Comolli N, Elmer J (2018) Increasing the stability of Lumbricus terrestris erythrocruorin via poly(acrylic acid) conjugation. Artif Cells Nanomed Biotechnol 46:1137–44. https://doi.org/10.1080/21691401.2018.1480491pl_PL
dc.referencesSavla C, Palmer AF (2022) Lyophilized annelid mega-hemoglobin retains its’ quaternary structure and oxygen equilibrium properties after room temperature storage for over 6 months. PLoS One 17:e0263996. https://doi.org/10.1371/journal.pone.0263996pl_PL
dc.identifier.doi10.1007/s00109-023-02350-3
dc.disciplinenauki medycznepl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe