dc.contributor.author | Idczak, Adam | |
dc.contributor.author | Korzeniewski, Jerzy | |
dc.date.accessioned | 2022-04-04T12:07:21Z | |
dc.date.available | 2022-04-04T12:07:21Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Idczak A., Korzeniewski J., Statystyczne metody klasyfikacji tekstów, WUŁ, Łódź 2022, https://doi.org/10.18778/8220-786-6 | pl_PL |
dc.identifier.isbn | 978-83-8220-786-6 | |
dc.identifier.uri | http://hdl.handle.net/11089/41490 | |
dc.description.abstract | W ostatnich latach, wraz z szybkim rozwojem technologii komputerowych i internetowych, coraz większego znaczenia nabierają komputerowe metody badania tekstu, w szczególności metody ustalania sentymentu czy też wydźwięku tekstu. Metody komputerowe mogą być później wykorzystywane w takich zagadnieniach, jak streszczanie tekstu, wyszukiwanie informacji z tekstu, sprawdzanie poprawności tekstu, maszynowe tłumaczenie tekstu i wielu innych. Niniejsza monografia zawiera przegląd metod analizy sentymentu dla dokumentów głównie anglojęzycznych, badanie efektywności wybranych metod analizy sentymentu w zastosowaniu do dokumentów polskojęzycznych, propozycje nowych metod, które mogą poprawić jakość klasyfikacji. W nowych propozycjach nacisk został położony na problemy klasyfikacji binarnej, niekorzystanie ze źródeł zewnętrznych, korzystanie w jak najmniejszym stopniu ze zbioru uczącego. Proponujemy przenieść ciężar klasyfikacji tekstów z obszernego zbioru uczącego na wyszukiwanie i analizowanie związków pomiędzy słowami tworzącymi dokument, a nawet grupami słów. Zaproponowana metoda ma prostą interpretację, może konkurować z metodami standardowymi oraz może być wykorzystana do innych problemów związanych z ustalaniem sentymentu tekstów. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | sentyment dokumentu | pl_PL |
dc.subject | klasyfikacja dokumentu | pl_PL |
dc.subject | komputerowe metody uczenia się | pl_PL |
dc.subject | korelacja liniowa | pl_PL |
dc.subject | metoda SVM | pl_PL |
dc.subject | klasyfikator Bayesa | pl_PL |
dc.title | Statystyczne metody klasyfikacji tekstów | pl_PL |
dc.type | Book | pl_PL |
dc.page.number | 142 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Instytut Statystyki i Demografii, Katedra Metod Statystycznych | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Instytut Statystyki i Demografii, Katedra Demografii | pl_PL |
dc.identifier.eisbn | 978-83-8220-787-3 | |
dc.references | Abbasi A., Chen H., Salem A., (2008), Sentiment Analysis in Multiple Languages: Feature Selection for Opinion Classification in Web Forums, „ACM Transactions on Information Systems”, vol. 26, issue 3, s. 1–34, https://doi.org/10.1145/1361684.1361685 | pl_PL |
dc.references | Agarwal A., Xie B., Vovsha I., Rambow O., Passonneau R., (2011), Sentiment Analysis of Twitter Data, [w:] Proceedings of the Workshop on Language in Social Media (LSM), s. 30–38. | pl_PL |
dc.references | Agarwal B., Mittal N., (2012), Categorical Probability Proportion Difference (CPPD): A Feature Selection Method for Sentiment Classification, [w:] Proceedings of the 2nd Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP), Mumbai, India, s. 17–26. | pl_PL |
dc.references | Agarwal B., Mittal N., (2016), Prominent Feature Extraction for Sentiment Analysis, Springer International Publishing, Cham. | pl_PL |
dc.references | Aggarwal C. C., (2018), Machine Learning for Text, Springer International Publishing, Cham. | pl_PL |
dc.references | Agnihotri D., Verma K., Tripathi P., (2016), Computing Correlative Association of Terms for Automatic Classification of Text Documents, [w:] Proceedings of the International Symposium on Computer Vision and the Internet, Association for Computing Machinery, New York, https://doi.org/10.1145/2983402.2983424 | pl_PL |
dc.references | Agnihotri D., Verma K., Tripathi P., Singh B., (2019), Soft Voting Technique to Improve the Performance of Global Filter Based Feature Selection in Text Corpus, „Applied Intelligence”, vol. 49, issue 4, s. 1597–1619, https://doi.org/10.1007/s10489-018-1349-1 | pl_PL |
dc.references | Bagheri A., Saraee M., Jong de F., (2013), Sentiment Classification in Persian: Introducing a Mutual Information-Based Method for Feature Selection, „21st Iranian Conference on Electrical Engineering (ICEE)”, s. 1–6, https://doi.org/10.1109/IranianCEE.2013.6599671 | pl_PL |
dc.references | Bahassine S., Madani A., Kissi M., (2016), An Improved Chi-Square Feature Selection for Arabic Text Classification Using Decision Tree, „11th International Conference on Intelligent Systems: Theories and Applications (SITA)”, s. 1–5, https://doi.org/ 10.1109/SITA.2016.7772289 | pl_PL |
dc.references | Bahassine S., Madani A., Al-Sarem M., Kissi M., (2018), Feature Selection Using an Improved Chi-Square for Arabic Text Classification, „Journal of King Saud University – Computer and Information Sciences”, vol. 32, issue 2, s. 225–231, https://doi.org/10.1016/j.jksuci.2018.05.010 | pl_PL |
dc.references | Bakus J., Kamel M., (2006), Higher Order Feature Selection for Text Classification, „Knowledge Information Systems”, vol. 9, issue 4, s. 468–491, https://doi.org/10.1007/s10115-005-0209-6 | pl_PL |
dc.references | Battiti R., (1994), Using Mutual Information for Selecting Features in Supervised Neural Net Learning, „IEEE Transactions on Neural Networks”, vol. 5, issue 4, s. 537–550, https://doi.org/10.1109/72.298224 | pl_PL |
dc.references | Blitzer J., Dredze M., Pereira F., (2007), Biographies, Bollywood, Boom-Boxes and Blenders: Domain Adaptation for Sentiment Classification, [w:] Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Association of Computational Linguistics, Prague, s. 440–447, https://aclanthology.org/P07-1056.pdf (dostęp: 11.02.2022). | pl_PL |
dc.references | Boser B. E., Guyon I. M., Vapnik, V. N., (1992), A Training Algorithm for Optimal Margin Classifiers, [w:] Proceedings of the 5th Annual Workshop on Computational Learning Theory, Association for Computing Machinery, New York, s. 144–152, https://doi.org/10.1145/130385.130401 | pl_PL |
dc.references | Cai J., Song F., (2008), Maximum Entropy Modeling with Feature Selection for Text Categorization, [w:] Proceedings of the 4th Asia Information Retrieval Conference on Information Retrieval Technology, s. 549–554. | pl_PL |
dc.references | Carvalho F., Guedes G. P., (2020), TF-IDFC-RF: A Novel Supervised Term Weighting Scheme for Sentiment Analysis, https://arxiv.org/pdf/2003.07193.pdf (dostęp: 20.07.2021). | pl_PL |
dc.references | Chen J., Huang H., Tian S., Qu Y., (2009), Feature Selection for Text Classification with Naïve Bayes, „Expert Systems with Applications”, vol. 36, issue 3, https://doi.org/10.1016/j.eswa. 2008.06.054 | pl_PL |
dc.references | Chen X., Ma J., Lu Y., (2013), Feature Selection for Chinese Online Reviews Sentiment Classification, [w:] Proceedings of the Joint Conference of International Conference on Computational Problem-Solving and International High Speed Intelligent Communication Forum, s. 79–82, https://doi.org/10.1109/ICCPS.2013.6893490 | pl_PL |
dc.references | Chen Y., Han B., Hou P., (2014), New Feature Selection Methods Based on Context Similarity for Text Categorization, [w:] Proceedings of the 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), https://doi.org/10.1109/FSKD.2014.6980902 | pl_PL |
dc.references | Combarro E., Montanes E., Diaz I., Ranilla J., Mones R., (2005), Introducing a Family of Linear Measures for Feature Selection in Text Categorization, „IEEE Transactions on Knowledge and Data Engineering”, vol. 17, issue 9, s. 1223–1232, https://doi.org/10.1109/TKDE.2005.149 | pl_PL |
dc.references | Cortes C., Vapnik V. N., (1995), Support-Vector Networks, „Machine Learning”, vol. 20, no. 3, s. 273–297. | pl_PL |
dc.references | Dai L., Chen H., Li X., (2011), Improving Sentiment Classification Using Feature Highlighting and Feature Bagging, [w:] Proceedings of 11th IEEE International Conference on Data Mining Workshops, s. 61–66. | pl_PL |
dc.references | Dave K., Lawrence S., Pennock D. M., (2003), Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews, [w:] Proceedings of the 12th International Conference on World Wide Web (WWW–2003), Association for Computing Machinery, New York, s. 519–528, https://doi.org/10.1145/775152.775226 | pl_PL |
dc.references | Davies A., Ghahramani Z., (2011), Language-Independent Bayesian Sentiment Mining of Twitter, [w:] Proceedings of the 5th Workshop on Social Network Mining and Analysis, s. 99–107. | pl_PL |
dc.references | Ding X., Tang Y., (2013), Improved Mutual Information Method for Text Feature Selection, [w:] Proceedings of the 8th International Conference on Computer Science and Education, s. 163–166, https://doi.org/10.1109/ICCSE.2013.6553903 | pl_PL |
dc.references | Domański Cz., Pruska K., (2000), Nieklasyczne metody statystyczne, PWE, Warszawa. | pl_PL |
dc.references | Dunning T., (1993), Accurate Methods for the Statistics of Surprise and Coincidence, „Computational Linguistics”, vol. 19, s. 61–74. | pl_PL |
dc.references | Elakkiya E., Selvakumar S., Velusamy R., (2020), CIFAS: Community Inspired Firefly Algorithm with Fuzzy Cross-Entropy for Feature Selection in Twitter Spam Detection, [w:] Proceedings of the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), s. 1–7, https://doi.org/10.1109/ICCCNT49239.2020.9225321 | pl_PL |
dc.references | Eyheramendy S., Madigan D., (2007), A Bayesian Feature Selection Score Based on Naïve Bayes Models, [w:] H. Liu, H. Motoda (eds), Computational Methods of Feature Selection, Chapman and Hall, New York, s. 277–294. | pl_PL |
dc.references | Forman G., (2003), An Extensive Empirical Study of Feature Selection Metrics for Text Classification, „Journal of Machine Learning Research”, vol. 3, s. 1289–1305. | pl_PL |
dc.references | Fragoudis D., Meretakis D., Likothanassis S., (2005), Best Terms: an Efficient Feature-Selection Algorithm for Text Categorization, „Knowledge and Information Systems”, vol. 8, issue 1, s. 16–33. | pl_PL |
dc.references | Fukumoto F., Suzuki Y., (2015), Temporal-based Feature Selection and Transfer Learning for Text Categorization, [w:] Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), s. 17–26. | pl_PL |
dc.references | Galavotti L., Sebastiani F., Simi M., (2000), Experiments on the Use of Feature Selection and Negative Evidence in Automated Text Categorization, [w:] J. L. Borbinha, T. Baker (eds), Proceedings of ECDL-00, 4th European Conference on Research and Advanced Technology for Digital Libraries, Springer Verlag, Lisbon–Heidelberg, s. 59–68. | pl_PL |
dc.references | Gamon M., (2004), Sentiment Classification on Customer Feedback Data: Noisy Data, Large Feature Vectors, and the Role of Linguistic Analysis, [w:] Proceedings of the 20th International Conference on Computational Linguistics (COLING), Association for Computational Linguistics, Stroudsburg, PA, s. 841–847, https://doi.org/10.3115/1220355.1220476 | pl_PL |
dc.references | Gao Z., Xu Y., Meng F., Qi F., Lin Z., (2014), Improved Information Gain-Based Feature Selection for Text Categorization, [w:] Proceedings of the 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace and Electronic Systems (VITAE), s. 1–5, https://doi.org/10.1109/VITAE.2014.6934421 | pl_PL |
dc.references | Garnes Ø. L., (2009), Feature Selection for Text Categorisation, Norwegian University of Science and Technology, Department of Computer and Information Science, https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/250768/347827_FULLTEXT01.pdf?sequence=1 (dostęp: 4.02.2022). | pl_PL |
dc.references | Genkin A., Lewis D., Madigan D., (2007), Large-Scale Bayesian Logistic Regression for Text Categorization, „Technometrics”, vol. 49, no. 3, s. 291–304. | pl_PL |
dc.references | Ghareb A. S., Abu Bakara A., Al-Radaideh Q. A., Hamdan A. R., (2018), Enhanced Filter Feature Selection Methods for Arabic Text Categorization, „International Journal of Information Retrieval Research”, vol. 8, issue 2, s. 1–24, https://doi.org/10.4018/IJIRR.2018040101 | pl_PL |
dc.references | Govindarajan M., (2013), Sentiment Analysis of Movie Reviews Using Hybrid Method of Naïve Bayes and Genetic Algorithm, „International Journal of Advanced Computer Research”, vol. 3, no. 4, s. 139–145. | pl_PL |
dc.references | Gündüz H., Çataltepe Z., (2015), Borsa Istanbul (BIST) Daily Prediction Using Financial News and Balanced Feature Selection, „Journal of Machine Learning”, vol. 42, no. 22. | pl_PL |
dc.references | Guyon I., Elisseeff A., (2003), An Introduction to Variable and Feature Selection, „The Journal of Machine Learning Research”, vol. 3, s. 1157–1182. | pl_PL |
dc.references | Hai N., Nghia N., Le H., Vu Thanh N., (2015), A Hybrid Feature Selection Method for Vietnamese Text Classification, Seventh International Conference on Knowledge and Systems Engineering (KSE), https://doi.org/10.1109/KSE.2015.25 | pl_PL |
dc.references | Hand D., Mannila H., Smith P., (2005), Eksploracja danych, Wydawnictwo Naukowo-Techniczne, Warszawa. | pl_PL |
dc.references | Hatzivassiloglou V., Wiebe J., (2000), Effects of Adjective Orientation and Gradability on Sentence Subjectivity, [w:] Proceedings of the International Conference on Computational Linguistics (COLING), Association for Computational Linguistics, Stroudsburg, PA, s. 299–305, https://doi.org/10.3115/990820.990864 | pl_PL |
dc.references | Hersh W., Buckley C., Leone T. J., Hickam D., (1994), OHSUMED: An Interactive Retrieval Evaluation and New Large Test Collection for Research, [w:] B. W. Croft, C. J. van Rijsbergen (eds), Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, s. 192–201. | pl_PL |
dc.references | Holland J., (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, USA. | pl_PL |
dc.references | Hosmer D. W., Lemeshow S., Sturdivant R. X., (2013), Applied Logistic Regression, 3rd ed., John Wiley & Sons, New Jersey. | pl_PL |
dc.references | Internet Movie Database, www.imdb.com (dostęp: 15.10.2021). | pl_PL |
dc.references | Iqbal F., Hashmi J., Fung B., Batool R., Khattak A. M., Aleem S., Hung P., (2019), A Hybrid Framework for Sentiment Analysis Using Genetic Algorithm Based Feature Reduction, „IEEE Access”, vol. 7, s. 14637–14652, https://doi.org/10.1109/ACCESS.2019.2892852 | pl_PL |
dc.references | Jiang T., Yu H., (2015), A Novel Feature Selection Based on Tibetan Grammar for Tibetan Text Classification, [w:] Proceedings of the 6th IEEE International Conference on Software Engineering and Service Sciences (ICSESS), s. 445–448, https://doi.org/10.1109/ICSESS.2015.7339093 | pl_PL |
dc.references | Jiang X.-Y., Shui J., (2013), An Improved Mutual Information-Based Feature Selection Algorithm for Text Classification, [w:] Proceedings of the 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, s. 126–129, https://doi.org/10.1109/IHMSC.2013.37 | pl_PL |
dc.references | Joachims T., (1998), Text Categorization with Support Vector Machines: Learning with Many Relevant Features, [w:] Machine Learning: ECML-98. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 1398, Springer, Berlin, s. 137–142, https://doi.org/10.1007/BFb0026683 | pl_PL |
dc.references | Joshi M., Penstein-Rosé C., (2009), Generalizing Dependency Features for Opinion Mining, [w:] Proceedings of the 47th ACL and the 4th IJCNLP Conference, Association for Computational Linguistics, ACL and AFNLP, Suntec, s. 313–316, https://aclanthology.org/P09-2079.pdf (dostęp: 11.02.2022). | pl_PL |
dc.references | Kwak N., Choi Ch.-H., (2002), Input Feature Selection for Classification Problems, „IEEE Transactions of Neural Works”, vol. 13, no. 1, s. 143–159, https://doi.org/10.1109/72.977291 | pl_PL |
dc.references | Lam W., Ho C. Y., (1998), Using a Generalized Instance Set for Automatic Text Categorization, [w:] Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, s. 81–89, https://doi.org/10.1145/290941.290961 | pl_PL |
dc.references | Largeron C., Moulin C., Géry M., (2011), Entropy Based Feature Selection for Text Categorization, [w:] Proceedings of the 2011 ACM Symposium on Applied Computing, Taichung, s. 924–928, https://doi.org/10.1145/1982185.1982389 | pl_PL |
dc.references | Lifang Y., Sijun Q., Huan Z., (2017), Feature Selection Algorithm for Hierarchical Text Classification Using Kullback-Leibler Divergence, [w:] Proceedings of the IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), s. 421–424, https://doi.org/10.1109/ ICCCBDA.2017.7951950 | pl_PL |
dc.references | Lula P., (2018), Statystyczne modelowanie zawartości dokumentów tekstowych, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków. | pl_PL |
dc.references | Lula P., Wójcik K., (2011), Sentiment Analysis of Consumer Opinions Written in Polish, „Economics and Management”, vol. 16, s. 1286–1291. | pl_PL |
dc.references | Malik A., Novovicova J., (2005), Information-Theoretic Feature Selection Algorithms for Text Classification, [w:] Proceedings of the IEEE International Joint Conference on Neural Networks, Montreal, vol. 5, s. 3272–3278, https://doi.org/10.1109/IJCNN.2005.1556452 | pl_PL |
dc.references | McCallum A., Nigam K., (1998), A Comparison of Event Models for Naïve Bayes Text Classification, [w:] Proceedings of the AAAI/ICML-98 Workshop on Learning for Text Categorization, AAAI Press, Madison, Wisconsin, s. 41–48. | pl_PL |
dc.references | Mladenic D., Grobelnik M., (1999), Feature Selection for Unbalanced Class Distribution and Naive Bayes, [w:] Proceedings of the 16th International Conference on Machine Learning (ICML), Bled, s. 258–267. | pl_PL |
dc.references | Mladenić D., Brank J., Grobelnik M., Milic-Frayling N., (2004), Feature Selection Using Linear Classifier Weights: Interaction with Classification Models, [w:] Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, s. 234–241, https://doi.org/10.1145/1008992.1009034 | pl_PL |
dc.references | Mladenović M., Mitrović J., Krstev C., Vitas D., (2016), Hybrid Sentiment Analysis Framework for a Morphologically Rich Language, „Journal of Intelligent Information Systems”, vol. 46, s. 599–620, https://doi.org/10.1007/s10844-015-0372-5 | pl_PL |
dc.references | Movie Review Data, https://www.cs.cornell.edu/people/pabo/movie-review-data/ (dostęp: 15.10.2021). | pl_PL |
dc.references | Na J.-Ch., Khoo C., Wu P. H. J., (2005), Use of Negation Phrases in Automatic Sentiment Classification of Product Reviews, „Library Collections, Acquisitions & Technical Services”, no. 29, s. 180–191, https://ccc.inaoep.mx/~villasen/bib/Use%20of%20negation%20phrases%20in%20automatic%20sentiment%20classification.pdf (dostęp: 11.02.2021). | pl_PL |
dc.references | Nasukawa T., Yi J., (2003), Sentiment Analysis: Capturing Favorability Using Natural Language Processing, [w:] Proceedings of the 2nd International Conference on Knowledge Capture, s. 70–77, https://doi.org/10.1145/945645.945658 | pl_PL |
dc.references | Ng H. T., Goh W. B., Low K. L., (1997), Feature Selection, Perceptron Learning, and a Usability Case Study for Text Categorization, [w:] N. J. Belkin, A. D. Narasimhalu, P. Willett (eds), Proceedings of the SIGIR-97, 20th ACM International Conference on Research and Development in Information Retrieval, ACM Press, New York, vol. 31, s. 67–73, https://doi.org/10.1145/278459.258537 | pl_PL |
dc.references | Nguyen T. H., Nghia N. H., Tuan D. L., Nguyen V. T., (2015), A Hybrid Feature Selection Method for Vietnamese Text Classification, [w:] Proceedings of the 7th International Conference on Knowledge and Systems Engineering (KSE), s. 91–96, https://doi.org/10.1109/KSE.2015.25 | pl_PL |
dc.references | O’Keefe T., Koprinska I., (2009), Feature Selection and Weighting Methods in Sentiment Analysis, [w:] Proceedings of the 14th Australasian Document Computing Symposium, Sydney. | pl_PL |
dc.references | Ong B. Y., Goh S. W., Xu C., (2015), Sparsity Adjusted Information Gain for Feature Selection in Sentiment Analysis, [w:] Proceedings of the IEEE International Conference on Big Data, Santa Clara, USA, s. 2122–2128, https://doi.org/10.1109/BigData.2015.7363995 | pl_PL |
dc.references | Ortega-Mendoza R. M., López-Monroy A., Franco-Arcega A., Montes-y-Gómez M., (2018), Emphasizing Personal Information for Author Profiling: New Approaches for Term Selection and Weighting, „Knowledge Based Systems”, vol. 145, s. 169–181, https://doi.org/10.1016/ J.KNOSYS.2018.01.014 | pl_PL |
dc.references | Pakiet e1071, https://CRAN.R-project.org/package=e1071 (dostęp: 21.09.2021). | pl_PL |
dc.references | Pakiet naivebayes, https://CRAN.R-project.org/package=naivebayes (dostęp: 21.09.2021). | pl_PL |
dc.references | Pakiet RWeka, https://CRAN.R-project.org/package=RWeka (dostęp: 21.09.2021). | pl_PL |
dc.references | Pakiet text2vec, https://CRAN.R-project.org/package=text2vec (dostęp: 20.09.2021). | pl_PL |
dc.references | Pakiet tm, https://CRAN.R-project.org/package=tm (dostęp: 20.09.2021). | pl_PL |
dc.references | Paltoglou G., Thelwall M., (2010), A Study of Information Retrieval Weighting Schemes for Sentiment Analysis, [w:] Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL ’10), Association for Computational Linguistics, Uppsala, s. 1386–1395, https://aclanthology.org/P10-1141.pdf (dostęp: 5.06.2021). | pl_PL |
dc.references | Pang B., Lee L., (2004), A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts, [w:] Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL ’04), Association for Computational Linguistics, Stroudsburg, PA, s. 271–278, https://doi.org/10.3115/1218955.1218990 | pl_PL |
dc.references | Pang B., Lee L., (2005), Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales, [w:] Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL ’05), Association for Computational Linguistics, Stroudsburg, PA, s. 115–124, https://doi.org/10.3115/1219840.1219855 | pl_PL |
dc.references | Pang B., Lee L., Vaithyanathan S., (2002), Thumbs up? Sentiment Classification Using Machine Learning Techniques, [w:] Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), Association for Computational Linguistics, Stroudsburg, PA, s. 79–86, https://www.cs.cornell.edu/home/llee/papers/sentiment.pdf (dostęp: 8.02.2021). | pl_PL |
dc.references | Patil L., Atique M., (2013), A Novel Feature Selection Based on Information Gain Using WordNet, [w:] Proceedings of the Science and Information Conference (SAI), London, s. 625–629. | pl_PL |
dc.references | Pintas J. T., Fernandes L. A. F., Garcia A. C. B., (2021), Feature Selection Methods for Text Classification: A Systematic Literature Review, „Artificial Intelligence Review”, vol. 54, s. 6149–6200, https://doi.org/10.1007/s10462-021-09970-6 | pl_PL |
dc.references | Rahate R. S., Emmanuel M., (2013), Feature Selection for Sentiment Analysis by Using SVM, „International Journal of Computer Applications”, vol. 84, no. 5, s. 24–32, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.3178&rep=rep1&type=pdf (dostęp: 4.02.2022). | pl_PL |
dc.references | Rastogi S., (2018), Improving Classification Accuracy of Automated Text Classifiers, [w:] Proceedings of the 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), Noida, India, s. 1–7, https://doi.org/10.1109/ICRITO.2018.8748498 | pl_PL |
dc.references | Ruiz M. E., Srinivasan P., (1999), Hierarchical Neural Networks for Text Categorization, [w:] Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, s. 281–282, https://doi.org/10.1145/312624.312700 | pl_PL |
dc.references | Saad S., Saberi B., (2017), Sentiment Analysis or Opinion Mining: A Review, „International Journal on Advanced Science, Engineering and Information Technology”, vol. 7, no. 5, s. 1660–1666, https://doi.org/10.18517/ijaseit.7.5.2137 | pl_PL |
dc.references | Saif H., He Y., Alani H., (2012), Alleviating Data Sparsity for Twitter Sentiment Analysis, [w:] 2nd Workshop on Making Sense of Microposts (#MSM2012): Big things come in small packages at the 21st International Conference on the World Wide Web (WWW’12), Lyon, CEUR Workshop Proceedings (CEUR-WS.org), s. 2–9, https://www2012.universite-lyon.fr/proceedings/nocompanion/MSM2012_paper_01.pdf (dostęp: 11.02.2022). | pl_PL |
dc.references | Salton G., Wong A., and Yang C. S., (1975), A Vector Space Model for Automatic Indexing, „Communication of the ACM”, vol. 18, issue 11, s. 613–620, https://doi.org/10.1145/361219.361220 | pl_PL |
dc.references | Sathic Ali P. U., Venkateswaran C. J., (2014), A Dempster-Shafer Model for Feature Selection in Text Categorization, „Research Journal of Applied Sciences, Engineering and Technology”, vol. 7, no. 5, s. 981–985, http://dx.doi.org/10.19026/rjaset.7.347 | pl_PL |
dc.references | Sebastiani F., (2002), Machine Learning in Automated Text Categorization, ACM Computing Surveys, vol. 34, issue 1, s. 1–47, https://doi.org/10.1145/505282.505283 | pl_PL |
dc.references | Shan L.-L., Liu B.-Q., Sun C.-J., (2011), Comparison and Improvement of Feature Selection Method for Text Categorization, „Journal of Harbin Institute of Technology”, vol. 43, no. 1, s. 319–324. | pl_PL |
dc.references | Shang W., Huang H., Zhu H., Lin Y., Qu Y., Wang Z., (2007), A Novel Feature Selection Algorithm for Text Categorization, „Expert Systems with Applications”, vol. 33, issue 1, s. 1–5, https://doi.org/10.1016/j.eswa.2006.04.001 | pl_PL |
dc.references | Shen K., Chen X., Ma J., Ke L., Lu Y., Zhang K., (2013), A Blended Feature Selection Method in Text Classification, [w:] Proceedings of the International Conference on Cyberspace Technology (CCT 2013), Beijing, China, s. 573–576, https://doi.org/10.1049/cp.2013.2077 | pl_PL |
dc.references | Simeon M., Hilderman R., (2008), Categorical Proportional Difference: A Feature Selection Method for Text Categorization, [w:] J. F. Roddick, J. Li, P. Christen, P. Kennedy (eds), The Seventh Australasian Data Mining Conference (AusDM 2008), Glenelg, South Australia. Conferences in Research and Practice in Information Technology (CRPIT), vol. 87, s. 201–208, https://dl.acm.org/doi/pdf/10.5555/2449288.2449320 (dostęp: 4.02.2022). | pl_PL |
dc.references | Stoplista, https://pl.wikipedia.org/wiki/Wikipedia:Stopwords (dostęp: 20.09.2021). | pl_PL |
dc.references | Subrahmanian V. S., Reforgiato D., (2008), AVA: Adjective-Verb-Adverb Combinations for Sentiment Analysis, „IEEE Intelligent Systems”, vol. 23, no. 4, s. 43–50, https://doi.org/10.1109/MIS.2008.57 | pl_PL |
dc.references | Sun J., Zhang X., Liao D., Chang V., (2017), Efficient Method for Feature Selection in Text Classification, [w:] Proceedings of International Conference on Engineering and Technology (ICET), Antalya, Turkey, s. 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308201 | pl_PL |
dc.references | Tan S., Zhang J., (2008), An Empirical Study of Sentiment Analysis for Chinese Documents, „Expert Systems with Application”, vol. 34, issue 4, s. 2622–2629, https://doi.org/10.1016/j.eswa.2007.05.028 | pl_PL |
dc.references | Wang H., Bell D., (2004), Extended k-Nearest Neighbours Based on Evidence Theory, „The Computer Journal”, no. 47, issue 6, s. 662–672, https://doi.org/10.1093/comjnl/47.6.662 | pl_PL |
dc.references | Wang W., Kang Y., Wu X., (2008), Study on Feature Selection in Text Categorization, „Information Technology”, no. 12, s. 29–31. | pl_PL |
dc.references | Wu G., Wang L., Zhao N., Lin H., (2015), Improved Expected Cross Entropy Method for Text Feature Selection, [w:] Proceedings of the International Conference on Computer Science and Mechanical Automation (CSMA), Massachusetts, USA, s. 49–54, https://doi.org/10.1109/CSMA.2015.17 | pl_PL |
dc.references | Wu G., Xu J., (2015), Optimized Approach of Feature Selection Based on Information Gain, [w:] Proceedings of the International Conference on Computer Science and Mechanical Automation (CSMA), Massachusetts, USA, s. 157–161, https://doi.org/10.1109/CSMA.2015.38 | pl_PL |
dc.references | Wu L., Wang Y., Zhang S., Zhang Y., (2017), Fusing Gini Index and Term Frequency for Text Feature Selection, [w:] Proceedings of the IEEE 3rd International Conference on Multimedia Big Data (BigMM), Laguna Hills, USA, s. 280–283, https://doi.org/10.1109/BigMM.2017.65 | pl_PL |
dc.references | Xu H., Yu S., Chen J., Zuo X., (2018), An Improved Firefly Algorithm for Feature Selection in Classification, „Wireless Personal Communications: An International Journal”, vol. 102, issue 4, s. 2823–2834, https://doi.org/10.1007/s11277-018-5309-1 | pl_PL |
dc.references | Yang X.-S., (2009), Firefly Algorithms for Multimodal Optimization, [w:] Proceedings of the 5th International Symposium on Stochastic Algorithms: Foundations and Applications, Springer, Berlin–Heidelberg, s. 169–178. | pl_PL |
dc.references | Yang Y., Liu X., (1999), A Re-Examination of Text Categorization Methods, [w:] Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’99), Berkeley, USA, s. 42–49, https://doi.org/10.1145/312624.312647 | pl_PL |
dc.references | Yazdani S. F., Murad M. A. A., Sharef N. M., Singh Y. P., Latiff A. R. A., (2017), Sentiment Classification of Financial News Using Statistical Features, „International Journal of Pattern Recognition and Artificial Intelligence”, vol. 31, no. 3, s. 1–34, https://doi.org/10.1142/S0218001417500069 | pl_PL |
dc.references | Yu L., Liu H., (2004), Efficient Feature Selection Via Analysis of Relevance and Redundancy, „Journal of Machine Learning Research”, vol. 5, s. 1205–1224. | pl_PL |
dc.references | Zhang H., Ren Y., Yang X., (2013), Research on Text Feature Selection Algorithm Based on Information Gain and Feature Relation Tree, [w:] Proceedings of the 10th Web Information System and Application Conference, Yangzhou, China, s. 446–449, https://doi.org/10.1109/WISA.2013.90 | pl_PL |
dc.references | Zhang T., Oles F. J., (2001), Text Categorization Based on Regularized Linear Classification Methods, „Information Retrieval”, vol. 4, s. 5–31. | pl_PL |
dc.references | Zhen Z., Zeng X., Wang H., Han L., (2011), A Global Evaluation Criterion for Feature Selection in Text Categorization Using Kullback-Leibler Divergence, [w:] International Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, s. 440–445, https://doi.org/10.1109/SoCPaR.2011.6089284 | pl_PL |
dc.references | Zhu L., Wang G., Zou X., (2017), Improved Information Gain Feature Selection Method for Chinese Text Classification Based on Word Embedding, [w:] Proceedings of the 6th International Conference of Software and Computer Applications, Bangkok, Thailand, s. 72–76, https://doi.org/10.1145/3056662.3056671 | pl_PL |
dc.identifier.doi | 10.18778/8220-786-6 | |