Pokaż uproszczony rekord

dc.contributor.authorKinart, Zdzisław
dc.contributor.authorTomaš, Renato
dc.date.accessioned2022-01-25T07:37:06Z
dc.date.available2022-01-25T07:37:06Z
dc.date.issued2020
dc.identifier.issn1452-3981
dc.identifier.urihttp://hdl.handle.net/11089/40492
dc.descriptionThe authors are grateful for the financial support of the Ministry of the Science and Education of Republic of Croatia and Ministry of Science and Higher Education of the Republic of Poland.pl_PL
dc.description.abstractThe article presents the electric conductivity values of sodium salts of four selected monocarboxylic acid derivatives in aqueous solution: those with a chlorine substituent in the peripheral position, i.e. ClCH(CH2)nCOOH; those with a bromine substituent in the peripheral position, i.e. BrCH(CH2)nCOOH; as well as unsaturated sodium salts with a double bond in the peripheral position, i.e. CH2=CH(CH2)nCOOH; and unsaturated sodium salts with a double bond in the second position, i.e. CH3-CH=CH(CH2)nCOOH. All conductivity measurements were performed at 298.15 K in the concentration range of 0.0005 < c / mol ∙ dm-3 < 0.018. The obtained values allowed the limiting molar conductivities ( 0  m ) of the studied electrolytes to be determined using the Fuoss-Justice equation. Based on these ( 0  m ) values, the molar limiting conductivity values ( ) for individual anions of the tested electrolytes were calculated and analyzed as a function of carbon chain length. The work also examines the effect of substituent type (Cl or Br) and double bond location on the limiting molar conductivity values of the tested monocarboxylic acid anions and compares them with literature values.pl_PL
dc.language.isoenpl_PL
dc.publisherESGpl_PL
dc.relation.ispartofseriesInternational Journal of Electrochemical Science;15
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMolar conductivitypl_PL
dc.subjectsodium salts of unsaturated carboxylic acidspl_PL
dc.subjectsodium salts of monocarboxylic acids with Cl and Br substituentspl_PL
dc.titleConductivity Properties of Selected Aliphatic Monocarboxylic Acid Anions in Water at 298.15 Kpl_PL
dc.typeArticlepl_PL
dc.page.number10007–10027pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Chemiipl_PL
dc.contributor.authorAffiliationFaculty of Chemistry and Technology, University of Splitpl_PL
dc.referencesZ. Kinart, A. Bald, Phys. Chem. Liq., 49 (2011) 366.pl_PL
dc.referencesA. Chmielewska, A. Bald, J. Mol. Liq., 137 (2008) 116.pl_PL
dc.referencesA. Chmielewska, A. Wypych-Stasiewicz, A. Bald, J. Mol. Liq., 136 (2007) 11.pl_PL
dc.referencesA. Chmielewska, A. Wypych-Stasiewicz, A. Bald, J. Mol. Liq., 122 (2005) 110.pl_PL
dc.referencesA. Chmielewska, A. Wypych-Stasiewicz, A. Bald, J. Mol. Liq., 130 (2007) 42.pl_PL
dc.referencesZ. Kinart, J. Mol. Liq., 248 (2017) 1059.pl_PL
dc.referencesZ. Kinart, J. Mol. Liq., https://doi.org/10.1016/j.molliq.2019.111405.pl_PL
dc.referencesA. Apelblat, J. Mol. Liq., 95 (2002) 99.pl_PL
dc.referencesM. Stańczyk, A. Boruń, M. Jóźwiak, J. Mol. Liq., https://doi.org/10.1016/j.molliq.2019.111370pl_PL
dc.referencesJ.F.J. Dippy, J. Chem. Soc. (Resumed), 1 (1938), 1222.pl_PL
dc.referencesD.F. Othmer, R. E. Krik., Krik-Othmer encyclopedia of chemical technology, John Wiley & Sons, New York 2001.pl_PL
dc.referencesC. B. Resse, Org. Biomol. Chem., 3 (2005) 3851.pl_PL
dc.referencesD.J. Wiley, J. Douglas, K. Beutner,T. Cox, K. Fife, A. B. Moscicki, L. Fukumoto, Clin. Infect. Dis., 35 (2002) 210.pl_PL
dc.referencesT. Ohara, T. Sato, N. Shimizu, G. Prescher H. Schwind, O. Weiberg, K. Marten, H. Greim, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2003).pl_PL
dc.referencesJ. Quint, A. Viallard J. Solution Chem., 7 (1978) 533.pl_PL
dc.referencesM. Bešter-Rogač, J. Hunger, A. Stoppa, R. Buchner, J. Chem. Eng. Data, 56 (2011) 1261.pl_PL
dc.referencesM. Bešter-Rogač, D. Habe, Acta Chim. Slov., 53 (2006) 391.pl_PL
dc.referencesR.M. Fuoss, J. Phys. Chem., 82 (1978) 2427.pl_PL
dc.referencesJ. C. Justice, Electrochim. Acta, 16 (1971) 701.pl_PL
dc.referencesM. Bončina, A. Apelblat, M. Bešter-Rogač, Dilute J. Chem. Eng. Data, 55 (2010) 1951.pl_PL
dc.referencesJ. Barthel, F. Feuerlein, R. Neueder, R. Wachter, J. Solution Chem., 9 (1980) 209.pl_PL
dc.referencesJ.M.G. Barthel, H. Krienke, W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer, New York, 1998.pl_PL
dc.referencesD. J. G. Ives, R. P. Linstead, H. L. Riley, J. Chem. Soc. (Resumed), 1 (1933) 561.pl_PL
dc.referencesW. L. German, A. J. Vogel; G. H. Vogel, J. Chem. Soc., 1 (1937) 1604.pl_PL
dc.referencesW. Ostwald, Z. Physik Chemie, 3 (1889) 241.pl_PL
dc.referencesJ. F. J. Dippy, R. H. Lewis, J. Chem. Soc. (Resumed), 1 (1937) 1008.pl_PL
dc.referencesM. Bešter-Rogač, Acta Chim. Slov., 56 (2009) 70.pl_PL
dc.referencesM. Bešter-Rogač, J. Chem. Eng. Data, 56 (2011) 4965.pl_PL
dc.referencesD. Rudan-Tasič, C. Klofutar, M. Bešter-Rogač, Acta Chim. Slov., 53 (2006) 324.pl_PL
dc.referencesM. Tomšič, M. Bešter-Rogač, A. Jamnik, R. Neueder, J. Barthel, J. Solution Chem., 31 (2002) 19.pl_PL
dc.referencesJ. Gujt, M. Bešter-Rogač, B. Hribar-Lee, J. Mol. Liq., 190 (2014) 34.pl_PL
dc.referencesM. Bešter-Rogač, M. V. Fedotova, S. E. Kruchinin, M. Klähn, Phys. Chem. Chem. Phys., 18 (2016) 28594.pl_PL
dc.referencesM. Salomon, J. Solution Chem., 15 (1986) 237.pl_PL
dc.referencesR.M. Fuoss, Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 16.pl_PL
dc.referencesR.M. Fuoss, J. Phys. Chem., 82 (1978) 2427.pl_PL
dc.referencesM. Bešter-Rogač, R. Neueder, J. Barthel, A. Apelblat, J. Solution Chem., 27 (1998) 299.pl_PL
dc.contributor.authorEmailzdzislaw.kinart@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailrtomas@ktf-split.hrpl_PL
dc.identifier.doi10.20964/2020.10.68
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe