Show simple item record

dc.contributor.authorNawrocka, Justyna
dc.contributor.authorMałolepsza, Urszula
dc.contributor.authorSzczech, Magdalena
dc.date.accessioned2021-12-17T13:15:55Z
dc.date.available2021-12-17T13:15:55Z
dc.date.issued2018
dc.identifier.citationNawrocka J., Szczech M., Małolepsza U. (2018): Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protect. Sci., 54: 17–23.pl_PL
dc.identifier.issn1212-2580
dc.identifier.urihttp://hdl.handle.net/11089/40082
dc.description.abstractThe treatment of cucumber plants with Trichoderma atroviride TRS25 (TRS25) provided protection against infection by Rhizoctonia solani. In plants inoculated with the pathogen, nontreated with Trichoderma, disease symptoms were observed on the roots, shoots, and leaves while in plants treated with TRS25 the spread of the disease was limited. The induction of systemic defence response in cucumber against R. solani infection seemed to be strongly related to the enhanced synthesis of phenolic compounds in plants. HPLC analysis indicated remarkable increases in the concentrations of 23 phenolics belonging to hydroxybenzoic acids, cinnamic acids, catechins, flavonols, flavons, and flavanons in the plants without systemic disease symptoms. We suggest that the accumulation of phenolic acids, flavonoids and de novo synthesis of catechins may strongly contribute to cucumber protection against R. solani.pl_PL
dc.description.sponsorshipPartly supported by Priority 1.3.1, Project Polish Trichoderma strains in plant protection and organic waste management and co-financed by the European Union through the European Regional Development Fund within the Innovative Operational Program, 2007–2013, Project No. UDA-POIG.01.03.01-00-129/09-00.pl_PL
dc.publisherCzech Academy of Agricultural Sciencespl_PL
dc.relation.ispartofseriesPlant Protection Science;54
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectTrichoderma spp.pl_PL
dc.subjectRhizoctonia solanipl_PL
dc.subjectbiocontrolpl_PL
dc.subjectdefence responsepl_PL
dc.titleTrichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solanipl_PL
dc.typeArticlepl_PL
dc.page.number17-23pl_PL
dc.contributor.authorAffiliationDepartment of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Polandpl_PL
dc.contributor.authorAffiliationResearch Institute of Horticulture, Skierniewice, Polandpl_PL
dc.identifier.eissn1805-9341
dc.referencesAnees Muhammad, Edel-Hermann Véronique, Steinberg Christian (2010): Build up of patches caused by Rhizoctonia solani. Soil Biology and Biochemistry, 42, 1661-1672 https://doi.org/10.1016/j.soilbio.2010.05.013pl_PL
dc.referencesAsad S.A., Ali N., Hameed A., Khan S.A., Ahmad R., Bilal M., Shahzad M., Tabassum A. (2014): Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Polish Journal of Microbiology, 63 (1): 95–103.pl_PL
dc.referencesCastellano G., Tena J., Torres F. (2012): Classification of phenolic compounds by chemical structural indicators and its relation to antioxidant properties of Posidonia oceanica (L.) Delile. MATCH Communications in Mathematical and in Computer Chemisty, 67: 231–250.pl_PL
dc.referencesContreras-Cornejo H.A., Macías-Rodríguez L., Beltrán-Peña E., Herrera-Estrella A., López-Bucio J. (2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling & Behavior, 6: 1554–1563.pl_PL
dc.referencesGams W., Bissett J. (1998): Morphology and identification of Trichoderma. In: Kubicek C.P., Harman G.E. (eds): Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics. London, Taylor & Francis: 3–34.pl_PL
dc.referencesGhassempour Alireza, Mollayi Saeed, Farzaneh Mohsen, Sharifi-Tehrani Abbas, Aboul-Enein Hassan Y. (2011): Variation of Catechin, epicatechin and their enantiomers concentrations before and after wheat cultivar-Puccinia triticina infection. Food Chemistry, 125, 1287-1290 https://doi.org/10.1016/j.foodchem.2010.10.028pl_PL
dc.referencesGIRARDI FELIPE A., TONIAL FABIANA, CHINI SILVIA O., SOBOTTKA ANDRÉA M., SCHEFFER-BASSO SIMONE M., BERTOL CHARISE D. (2014): Phytochemical profile and antimicrobial properties of Lotus spp. (Fabaceae). Anais da Academia Brasileira de Ciências, 86, 1295-1302 https://doi.org/10.1590/0001-3765201420130220pl_PL
dc.referencesHermosa R., Viterbo A., Chet I., Monte E. (2011): Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17-25 https://doi.org/10.1099/mic.0.052274-0pl_PL
dc.referencesKelebek Hasim, Selli Serkan, Canbas Ahmet, Cabaroglu Turgut (2009): HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91, 187-192 https://doi.org/10.1016/j.microc.2008.10.008pl_PL
dc.referencesKeski-Saari Sarita, Julkunen-Tiitto Riitta (2003): Resource allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth. Physiologia Plantarum, 118, 114-126 https://doi.org/10.1034/j.1399-3054.2003.00077.xpl_PL
dc.referencesLópez-Bucio José, Pelagio-Flores Ramón, Herrera-Estrella Alfredo (2015): Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109-123 https://doi.org/10.1016/j.scienta.2015.08.043pl_PL
dc.referencesMandal S.M., Chakraborty D., Dey S. (2010): Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling & Behavior, 5: 359–368.pl_PL
dc.referencesMierziak Justyna, Kostyn Kamil, Kulma Anna (2014): Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules, 19, 16240-16265 https://doi.org/10.3390/molecules191016240pl_PL
dc.referencesMolina Anabel, Bueno Pablo, Marin Maria Carmen, Rodriguez-Rosales Maria Pilar, Belver Andres, Venema Kees, Donaire Juan Pedro (2002): Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 156, 409-415 https://doi.org/10.1046/j.1469-8137.2002.00527.xpl_PL
dc.referencesPannecoucque J., Van Beneden S., Höfte M. (2008): Characterization and pathogenicity of Rhizoctonia isolates associated with cauliflower in Belgium. Plant Pathology, 57, 737-746 https://doi.org/10.1111/j.1365-3059.2007.01823.xpl_PL
dc.referencesPOURCEL L, ROUTABOUL J, CHEYNIER V, LEPINIEC L, DEBEAUJON I (2007): Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12, 29-36 https://doi.org/10.1016/j.tplants.2006.11.006pl_PL
dc.referencesRao G.S., Reddy N.N.R., Surekha C. (2015): Induction of plant systemic resistance in Legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternata – a Trichoderma viride mediated reprogramming of plant defense mechanism. International Journal of Science and Research, 6: 4270–4280.pl_PL
dc.referencesSamuels Gary J., Dodd Sarah L., Gams Walter, Castlebury Lisa A., Petrini Orlando (2017): Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170 https://doi.org/10.1080/15572536.2003.11833257pl_PL
dc.referencesSkoneczny Dominik, Oskiera Michał, Szczech Magdalena, Bartoszewski Grzegorz (2015): Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica, 60, 297-307 https://doi.org/10.1007/s12223-015-0385-zpl_PL
dc.referencesSzczech M., Witkowska D., Piegza M., Kancelista A., Małolepsza U., Gajewska E., Kowalska B. (2014): Selection system for beneficial microorganisms following Trichoderma example. In: 11th Conference of the European Foundation for Plant Pathology Healthy Plants – Healthy People. Sep 8–13, 2014, Kraków, Poland: 301.pl_PL
dc.referencesTaheri Parissa, Tarighi Saeed (2011): A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. Journal of Plant Physiology, 168, 1114-1122 https://doi.org/10.1016/j.jplph.2011.01.001pl_PL
dc.referencesTreutter Dieter (2006): Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4, 147-157 https://doi.org/10.1007/s10311-006-0068-8pl_PL
dc.referencesWu Ting, Zang Xixi, He Mengying, Pan Siyi, Xu Xiaoyun (2013): Structure–Activity Relationship of Flavonoids on Their Anti-Escherichia coli Activity and Inhibition of DNA Gyrase. Journal of Agricultural and Food Chemistry, 61, 8185-8190 https://doi.org/10.1021/jf402222vpl_PL
dc.referencesVogt Thomas (2010): Phenylpropanoid Biosynthesis. Molecular Plant, 3, 2-20 https://doi.org/10.1093/mp/ssp106pl_PL
dc.referencesYamamoto M., Nakatsuka S., Otani H., Kohmoto K., Nishimura S. (2000): (+)-Catechin Acts as an Infection-Inhibiting Factor in Strawberry Leaf. Phytopathology, 90, 595-600 https://doi.org/10.1094/PHYTO.2000.90.6.595pl_PL
dc.contributor.authorEmailjnawrocka@biol.uni.lodz.plpl_PL
dc.identifier.doi10.17221/126/2016-PPS
dc.relation.volume1pl_PL
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe