Pokaż uproszczony rekord

dc.contributor.authorRogacz, Diana
dc.contributor.authorRychter, Piotr
dc.contributor.authorLewkowski, Jarosław
dc.contributor.authorMalinowski, Zbigniew
dc.contributor.authorMatusiak, Agnieszka
dc.contributor.authorMorawska, Marta
dc.date.accessioned2021-12-16T11:54:08Z
dc.date.available2021-12-16T11:54:08Z
dc.date.issued2018
dc.identifier.citationRogacz, D.; Lewkowski, J.; Malinowski, Z.; Matusiak, A.; Morawska, M.; Rychter, P. Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculture. Molecules 2018, 23, 3173. https://doi.org/10.3390/molecules23123173pl_PL
dc.identifier.issn1420-3049
dc.identifier.urihttp://hdl.handle.net/11089/40074
dc.description.abstractBackground: The aim of this work was to evaluate phytotoxicity of the thiophene derivatives against three persistent weeds of a high degree of resistance (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album) as well as their ecotoxicological impact on Heterocypris incongruens. In addition, Aliivibrio fischeri was measured. Two of eight described aminophosphonates, namely dimethyl N-(2-methoxyphenyl)amino(2-thienyl)methylphosphonate (2d) and dimethyl N-(tert-butyl)- (2-thienyl)methylphosphonate (2h), have never been reported before. Methods: The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD 208 Guideline. Ecotoxicological properties of investigated compounds were made using the OSTRACODTOXKITTM and Microtox® tests. Results: Obtained results showed that four aminophosphonates have interesting herbicidal properties and N-(2-methylphenyl)amino- (2-thienyl)methylphosphonate (2a) was found to kill efficiently the most resistant plant Chenopodium album. None of the tested compounds showed important toxicity against Aliivibrio fischeri. However, their toxic impact on Heterocypris incongruens was significantly elevated. Conclusions: The aminophosphonate 2a showed herbicidal potential and it is not toxic against tested bacteria (EC50 over 1000 mg/L). It was found to be moderately toxic against ostracods [mortality 48% at 10 mg/kg of soil dry weight (s.d.w.)] and this problem should be solved by the use of the controlled release from a polymeric carrier.pl_PL
dc.description.sponsorshipThis research work was funded by the Narodowe Centrum Nauki (NCN, Poland), grant No. 2014/13/B/NZ9/02418. The Faculty of Chemistry, University of Łódź attributed funds for covering the costs to publish in open access.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;23(12)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectherbicidal activitypl_PL
dc.subjectpersistent weedspl_PL
dc.subjectAliivibrio fischeri testpl_PL
dc.subjectHeterocypris incongruens testpl_PL
dc.subjectecotoxicologypl_PL
dc.subjectOECD standardpl_PL
dc.titleEffect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculturepl_PL
dc.typeArticlepl_PL
dc.page.number20pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 42-200 Częstochowa, 13/15 Armii Krajowej Av., Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 42-200 Częstochowa, 13/15 Armii Krajowej Av., Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.referencesAndersen, S.M.; Hertz, P.B.; Holst, T.; Bossi, R.; Jacobsen, C.S. Mineralisation studies of C14-labelled metsulfuron-methyl, tribenuron-methyl, chlorsulfuron and thifensulfuronmethyl in one Danish soil and groundwater sediment profile. Chemosphere 2001, 45, 775–782.pl_PL
dc.referencesPolati, S.; Bottaro, M.; Frascarolo, P.; Gosetti, F.; Gianotti, V.; Gennaro, M.C. HPLC-UV and HPLC-MSn multiresidue determination of amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl and azoxystrobin in surface waters. Anal. Chim. Acta 2006, 579, 146–151.pl_PL
dc.referencesEFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance thifensulfuron-methyl. EFSA J. 2015, 13, 4201.pl_PL
dc.referencesRosenkrantz, R.Y.; Baun, A.; Kusk, O. Growth inhibition and recovery of Lemna gibba after pulse exposure to sulfonylurea herbicides. Ecotoxicol. Environ. Saf. 2013, 89, 89–94.pl_PL
dc.referencesBeckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28.pl_PL
dc.references2,4-D and Dicamba-Resistant Crops and Their Implications for Susceptible Non-Target Crops. Available online: http://msue.anr.msu.edu/news/24_d_and_dicamba_resistant_crops_and_their_implications_for_susceptible_non (accessed on 28 November 2018).pl_PL
dc.referencesVanlaeys, A.; Dubuisson, F.; Seralini, G.-E.; Travert, C. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells. Toxicol. In Vitro 2018, 52, 14–22.pl_PL
dc.referencesDefarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018, 5, 156–163pl_PL
dc.referencesMesnage, R.; Bernay, B.; Séralini, G.-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013, 313, 122–128.pl_PL
dc.referencesFilipe, O.M.S.; Santos, S.A.O.; Domingues, M.R.M.; Vidal, M.M.; Silvestre, A.J.D.; Neto, C.P.; Santos, E.B.H. Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC–MS/MS. Chemosphere 2013, 91, 993–1001.pl_PL
dc.referencesSanchirico, R.; Pinto, G.; Pollio, A.; Cordella, M.; Cozzani, V. Thermal degradation of Fenitrothion: Identification and eco-toxicity of decomposition products. J. Hazard. Mater. 2012, 199–200, 390–400.pl_PL
dc.referencesBaghestani, M.A.; Zand, E.; Soufizadeh, S.; Jamali, M.; Mighany, F. Evaluation of sulfosulfuron for broadleaved and grass weed control in wheat (Triticum aestivum L.) in Iran. Crop Prot. 2007, 26, 1385–1389.pl_PL
dc.referencesTerrestrial plant test: Seedling emergence and seedling growth test. In OECD/OCDE Guidelines for the Testing of Chemicals. Section 2. Effects on Biotic Systems; Organization for Economic and Cooperation Development (OECD) Publishing: Paris, France, 2006; ISSN 20745761.pl_PL
dc.referencesLewkowski, J.; Morawska, M.; Karpowicz, R.; Rychter, P.; Rogacz, D.; Lewicka, K.; Dobrzyński, P. Evaluation of Ecotoxicological Impact of New Pyrrole-derived Aminophosphonates Using Selected Bioassay Battery. Ecotoxicology 2017, 26, 914–929.pl_PL
dc.referencesLewkowski, J.; Karpowicz, R.; Morawska, M.; Rychter, P.; Rogacz, D.; Lewicka, K.; Dobrzyński, P. Synthesis and ecotoxicological impact of ferrocene-derived amino-phosphonates using a battery of bioassays. RSC Adv. 2017, 7, 38399–38409.pl_PL
dc.referencesLewkowski, J.; Morawska, M.; Karpowicz, R.; Rychter, P.; Rogacz, D.; Lewicka, K. Novel (5-nitrofurfuryl)-substituted esters of phosphonoglycine—Their synthesis and phyto- and ecotoxicological properties. Chemosphere 2017, 188, 618–632.pl_PL
dc.referencesAlshallash, K.S. Germination of weed species (Avena fatua, Bromus catharticus, Chenopodium album and Phalaris minor) with implications for their dispersal and control. Ann. Agric. Sci. 2018, 63, 91–97.pl_PL
dc.referencesParsons, D.; Lane, P.; Hall, E.; Galloway, A.; Pham Van, B. Effective Weed Control for Talish and Hairy Canary Clover Seed Crops; Rural Industries Research and Development Corporation: Barton, Australia, 2013; p. 5. ISBN 9 978-1-74254-567-7.pl_PL
dc.referencesHernando, M.D.; De Vettori, S.; Martinez Bueno, M.J.; Fernandez-Alba, A.R. Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 2007, 68, 724–730.pl_PL
dc.referencesTechnical Guidance Documents in Support of Directive 93/67/EEC on Risk Assessment of New Notified Substances and Regulation (EC) No. 1488/94 on Risk Assessment of Existing Substances (Parts I, II, III and IV). Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/technical-guidance-document-risk-assessment-part-1-part-2 (accessed on 28 November 2018).pl_PL
dc.referencesAlshallash, K.S. Effect of pendimethalin, triflufarin, and terbutryn on Lolium multiflorum growing with barley during pre-emergence stage. Ann. Agric. Sci. 2014, 59, 239–242.pl_PL
dc.referencesChikoye, D.; Abaidoo, R.; Fontem, L.A. Response of weeds and soil microorganisms to imazaquin and pendimethalin in cowpea and soybean. Crop Prot. 2014, 65, 168–172.pl_PL
dc.referencesSolaimalai, A.; Ramesh, R.T.; Baskar, M. Pesticides and environment. In Environmental Contamination and Bioreclamation; Kumar, A., Ed.; APH Publishing Co.: New Dehli, India, 2004; pp. 345–382.pl_PL
dc.referencesSoltani, N.; Shropshire, C.; Sikkema, P.H. Response of spring planted barley (Hordeum vulgare L.), oats (Avena sativa L.) and wheat (Triticum aestivum L.) to mesotrione. Crop Prot. 2011, 30, 849–853.pl_PL
dc.referencesPannacci, E.; Covarelli, G. Efficacy of mesotrione used at reduced doses for post-emergence weed control in maize (Zea mays L.). Crop Prot. 2009, 28, 57–61.pl_PL
dc.referencesNurse, R.E.; Hamill, A.S.; Swanton, C.J.; Tardif, F.J.; Sikkema, P.H. Weed control and yield response to mesotrione in maize (Zea mays). Crop Prot. 2010, 29, 652–657.pl_PL
dc.referencesSihtmäe, M.; Blinova, I.; Künnis-Beres, K.; Kanarbik, L.; Heinlaan, M.; Kahru, A. Ecotoxicological effects of different glyphosate formulations. Appl. Soil Ecol. 2013, 72, 215–224.pl_PL
dc.referencesRogacz, D.; Lewkowski, J.; Cal, D.; Rychter, P. C-Aryl Substituted Derivatives of Glyphosate—Their Phyto- and Ecotoxicological Properties. (in preparation)pl_PL
dc.referencesBaylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308.pl_PL
dc.referencesBatisson, I.; Sancelme, M.; Mallet, C.; Besse-Hoggan, P. Fate and environmental impact of the recently marketed herbicide Mesotrione: Coupling biological and chemical studies for a global overview. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2010; Volume 1, pp. 287–294.pl_PL
dc.referencesBonnet, J.-L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch. Environ. Contam. Toxicol. 2008, 55, 576–583.pl_PL
dc.referencesKyriakopoulou, K.; Anastasiadou, P.; Machera, K. Comparative Toxicities of Fungicide and Herbicide Formulations on Freshwater and Marine Species. Bull. Environ. Contam. Toxicol. 2009, 82, 290–295.pl_PL
dc.referencesBražėnaitė, J.; Šakalienė, O. Availability and toxicity of pendimethalin to aquatic microorganisms. Biologija 2006, 3, 59–62.pl_PL
dc.referencesBonnet, J.-L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 2007, 22, 78–91.pl_PL
dc.referencesTsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197.pl_PL
dc.referencesIUPAC THE PPDB Pesticide Properties Database. Available online: https://sitem.herts.ac.uk/aeru/iupac/index.htm (accessed on 24 October 2018).pl_PL
dc.referencesEPA United States Environmental Protection Agency. Available online: https://www3.epa.gov/pesticides/endanger/litstatus/effects/pendimeth/analysis.pdf (accessed on 24 October 2018).pl_PL
dc.referencesThurston County Washington Public Health & Social Services. Available online: https://www.co.thurston.wa.us/health/ehipm/pdf_terr/terrestrial%20actives/pendimethalin.pdf (accessed on 24 October 2018).pl_PL
dc.referencesVighi, M.; Matthies, M.; Solomon, K.R. Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. J. Toxicol. Environ. Health B 2017, 20, 1–21.pl_PL
dc.referencesCosta, A.G.F.; Sofiatti, V.; Maciel, C.D.G.; Lira, A.J.S.; Cordeiro, A.F., Jr.; Silva, R.L.M. Weed Management With Herbicides Applied in Pre and Postemergence on Castor Crop. Planta Daninha 2015, 33, 551–559.pl_PL
dc.referencesLewkowski, J.; Rodriguez Moya, M.; Chmielak, M.; Rogacz, D.; Lewicka, K.; Rychter, P. Synthesis, spectral characterization of several novel pyrene-derived aminophosphonates and their ecotoxicological evaluation using Heterocypris incongruens and Vibrio fischeri tests. Molecules 2016, 21, 936.pl_PL
dc.referencesDoe, K.; Scroggins, R.; Mcleay, D.; Wohlgeschaffen, G. Solid-phase test for sediment toxicity using the luminescent bacterium Vibrio fischeri. In Small-Scale Freshwater Toxicity Investigations; Blaise, C., Férard, J.F., Eds.; Springer: Dordrecht, Netherlands, 2005; Volume 1, pp. 107–136.pl_PL
dc.referencesMartínez-Sanchez, M.J.; Pérez-Sirvent, C.; García-Lorenzo, M.L.; Martínez-López, S.; Bech, J.; García-Tenorio, R.; Bolívar, J.P. Use of bioassays for the assessment of areas affected by phosphate industry wastes. J. Geochem. Explor. 2014, 147, 130–138.pl_PL
dc.identifier.doi10.3390/molecules23123173
dc.relation.volume3173pl_PL
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe