dc.contributor.author | Rogacz, Diana | |
dc.contributor.author | Rychter, Piotr | |
dc.contributor.author | Lewkowski, Jarosław | |
dc.contributor.author | Malinowski, Zbigniew | |
dc.contributor.author | Matusiak, Agnieszka | |
dc.contributor.author | Morawska, Marta | |
dc.date.accessioned | 2021-12-16T11:54:08Z | |
dc.date.available | 2021-12-16T11:54:08Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Rogacz, D.; Lewkowski, J.; Malinowski, Z.; Matusiak, A.; Morawska, M.; Rychter, P. Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculture. Molecules 2018, 23, 3173. https://doi.org/10.3390/molecules23123173 | pl_PL |
dc.identifier.issn | 1420-3049 | |
dc.identifier.uri | http://hdl.handle.net/11089/40074 | |
dc.description.abstract | Background: The aim of this work was to evaluate phytotoxicity of the thiophene derivatives against three persistent weeds of a high degree of resistance (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album) as well as their ecotoxicological impact on Heterocypris incongruens. In addition, Aliivibrio fischeri was measured. Two of eight described aminophosphonates, namely dimethyl N-(2-methoxyphenyl)amino(2-thienyl)methylphosphonate (2d) and dimethyl N-(tert-butyl)- (2-thienyl)methylphosphonate (2h), have never been reported before. Methods: The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD 208 Guideline. Ecotoxicological properties of investigated compounds were made using the OSTRACODTOXKITTM and Microtox® tests. Results: Obtained results showed that four aminophosphonates have interesting herbicidal properties and N-(2-methylphenyl)amino- (2-thienyl)methylphosphonate (2a) was found to kill efficiently the most resistant plant Chenopodium album. None of the tested compounds showed important toxicity against Aliivibrio fischeri. However, their toxic impact on Heterocypris incongruens was significantly elevated. Conclusions: The aminophosphonate 2a showed herbicidal potential and it is not toxic against tested bacteria (EC50 over 1000 mg/L). It was found to be moderately toxic against ostracods [mortality 48% at 10 mg/kg of soil dry weight (s.d.w.)] and this problem should be solved by the use of the controlled release from a polymeric carrier. | pl_PL |
dc.description.sponsorship | This research work was funded by the Narodowe Centrum Nauki (NCN, Poland), grant No. 2014/13/B/NZ9/02418. The Faculty of Chemistry, University of Łódź attributed funds for covering the costs to publish in open access. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;23(12) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | herbicidal activity | pl_PL |
dc.subject | persistent weeds | pl_PL |
dc.subject | Aliivibrio fischeri test | pl_PL |
dc.subject | Heterocypris incongruens test | pl_PL |
dc.subject | ecotoxicology | pl_PL |
dc.subject | OECD standard | pl_PL |
dc.title | Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants. Part 2. Their Ecotoxicological Impact and Phytotoxicity Test Toward Herbicidal Application in Agriculture | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 20 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 42-200 Częstochowa, 13/15 Armii Krajowej Av., Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 42-200 Częstochowa, 13/15 Armii Krajowej Av., Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.references | Andersen, S.M.; Hertz, P.B.; Holst, T.; Bossi, R.; Jacobsen, C.S. Mineralisation studies of C14-labelled metsulfuron-methyl, tribenuron-methyl, chlorsulfuron and thifensulfuronmethyl in one Danish soil and groundwater sediment profile. Chemosphere 2001, 45, 775–782. | pl_PL |
dc.references | Polati, S.; Bottaro, M.; Frascarolo, P.; Gosetti, F.; Gianotti, V.; Gennaro, M.C. HPLC-UV and HPLC-MSn multiresidue determination of amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl and azoxystrobin in surface waters. Anal. Chim. Acta 2006, 579, 146–151. | pl_PL |
dc.references | EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance thifensulfuron-methyl. EFSA J. 2015, 13, 4201. | pl_PL |
dc.references | Rosenkrantz, R.Y.; Baun, A.; Kusk, O. Growth inhibition and recovery of Lemna gibba after pulse exposure to sulfonylurea herbicides. Ecotoxicol. Environ. Saf. 2013, 89, 89–94. | pl_PL |
dc.references | Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. | pl_PL |
dc.references | 2,4-D and Dicamba-Resistant Crops and Their Implications for Susceptible Non-Target Crops. Available online: http://msue.anr.msu.edu/news/24_d_and_dicamba_resistant_crops_and_their_implications_for_susceptible_non (accessed on 28 November 2018). | pl_PL |
dc.references | Vanlaeys, A.; Dubuisson, F.; Seralini, G.-E.; Travert, C. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells. Toxicol. In Vitro 2018, 52, 14–22. | pl_PL |
dc.references | Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018, 5, 156–163 | pl_PL |
dc.references | Mesnage, R.; Bernay, B.; Séralini, G.-E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013, 313, 122–128. | pl_PL |
dc.references | Filipe, O.M.S.; Santos, S.A.O.; Domingues, M.R.M.; Vidal, M.M.; Silvestre, A.J.D.; Neto, C.P.; Santos, E.B.H. Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC–MS/MS. Chemosphere 2013, 91, 993–1001. | pl_PL |
dc.references | Sanchirico, R.; Pinto, G.; Pollio, A.; Cordella, M.; Cozzani, V. Thermal degradation of Fenitrothion: Identification and eco-toxicity of decomposition products. J. Hazard. Mater. 2012, 199–200, 390–400. | pl_PL |
dc.references | Baghestani, M.A.; Zand, E.; Soufizadeh, S.; Jamali, M.; Mighany, F. Evaluation of sulfosulfuron for broadleaved and grass weed control in wheat (Triticum aestivum L.) in Iran. Crop Prot. 2007, 26, 1385–1389. | pl_PL |
dc.references | Terrestrial plant test: Seedling emergence and seedling growth test. In OECD/OCDE Guidelines for the Testing of Chemicals. Section 2. Effects on Biotic Systems; Organization for Economic and Cooperation Development (OECD) Publishing: Paris, France, 2006; ISSN 20745761. | pl_PL |
dc.references | Lewkowski, J.; Morawska, M.; Karpowicz, R.; Rychter, P.; Rogacz, D.; Lewicka, K.; Dobrzyński, P. Evaluation of Ecotoxicological Impact of New Pyrrole-derived Aminophosphonates Using Selected Bioassay Battery. Ecotoxicology 2017, 26, 914–929. | pl_PL |
dc.references | Lewkowski, J.; Karpowicz, R.; Morawska, M.; Rychter, P.; Rogacz, D.; Lewicka, K.; Dobrzyński, P. Synthesis and ecotoxicological impact of ferrocene-derived amino-phosphonates using a battery of bioassays. RSC Adv. 2017, 7, 38399–38409. | pl_PL |
dc.references | Lewkowski, J.; Morawska, M.; Karpowicz, R.; Rychter, P.; Rogacz, D.; Lewicka, K. Novel (5-nitrofurfuryl)-substituted esters of phosphonoglycine—Their synthesis and phyto- and ecotoxicological properties. Chemosphere 2017, 188, 618–632. | pl_PL |
dc.references | Alshallash, K.S. Germination of weed species (Avena fatua, Bromus catharticus, Chenopodium album and Phalaris minor) with implications for their dispersal and control. Ann. Agric. Sci. 2018, 63, 91–97. | pl_PL |
dc.references | Parsons, D.; Lane, P.; Hall, E.; Galloway, A.; Pham Van, B. Effective Weed Control for Talish and Hairy Canary Clover Seed Crops; Rural Industries Research and Development Corporation: Barton, Australia, 2013; p. 5. ISBN 9 978-1-74254-567-7. | pl_PL |
dc.references | Hernando, M.D.; De Vettori, S.; Martinez Bueno, M.J.; Fernandez-Alba, A.R. Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 2007, 68, 724–730. | pl_PL |
dc.references | Technical Guidance Documents in Support of Directive 93/67/EEC on Risk Assessment of New Notified Substances and Regulation (EC) No. 1488/94 on Risk Assessment of Existing Substances (Parts I, II, III and IV). Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/technical-guidance-document-risk-assessment-part-1-part-2 (accessed on 28 November 2018). | pl_PL |
dc.references | Alshallash, K.S. Effect of pendimethalin, triflufarin, and terbutryn on Lolium multiflorum growing with barley during pre-emergence stage. Ann. Agric. Sci. 2014, 59, 239–242. | pl_PL |
dc.references | Chikoye, D.; Abaidoo, R.; Fontem, L.A. Response of weeds and soil microorganisms to imazaquin and pendimethalin in cowpea and soybean. Crop Prot. 2014, 65, 168–172. | pl_PL |
dc.references | Solaimalai, A.; Ramesh, R.T.; Baskar, M. Pesticides and environment. In Environmental Contamination and Bioreclamation; Kumar, A., Ed.; APH Publishing Co.: New Dehli, India, 2004; pp. 345–382. | pl_PL |
dc.references | Soltani, N.; Shropshire, C.; Sikkema, P.H. Response of spring planted barley (Hordeum vulgare L.), oats (Avena sativa L.) and wheat (Triticum aestivum L.) to mesotrione. Crop Prot. 2011, 30, 849–853. | pl_PL |
dc.references | Pannacci, E.; Covarelli, G. Efficacy of mesotrione used at reduced doses for post-emergence weed control in maize (Zea mays L.). Crop Prot. 2009, 28, 57–61. | pl_PL |
dc.references | Nurse, R.E.; Hamill, A.S.; Swanton, C.J.; Tardif, F.J.; Sikkema, P.H. Weed control and yield response to mesotrione in maize (Zea mays). Crop Prot. 2010, 29, 652–657. | pl_PL |
dc.references | Sihtmäe, M.; Blinova, I.; Künnis-Beres, K.; Kanarbik, L.; Heinlaan, M.; Kahru, A. Ecotoxicological effects of different glyphosate formulations. Appl. Soil Ecol. 2013, 72, 215–224. | pl_PL |
dc.references | Rogacz, D.; Lewkowski, J.; Cal, D.; Rychter, P. C-Aryl Substituted Derivatives of Glyphosate—Their Phyto- and Ecotoxicological Properties. (in preparation) | pl_PL |
dc.references | Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. | pl_PL |
dc.references | Batisson, I.; Sancelme, M.; Mallet, C.; Besse-Hoggan, P. Fate and environmental impact of the recently marketed herbicide Mesotrione: Coupling biological and chemical studies for a global overview. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2010; Volume 1, pp. 287–294. | pl_PL |
dc.references | Bonnet, J.-L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch. Environ. Contam. Toxicol. 2008, 55, 576–583. | pl_PL |
dc.references | Kyriakopoulou, K.; Anastasiadou, P.; Machera, K. Comparative Toxicities of Fungicide and Herbicide Formulations on Freshwater and Marine Species. Bull. Environ. Contam. Toxicol. 2009, 82, 290–295. | pl_PL |
dc.references | Bražėnaitė, J.; Šakalienė, O. Availability and toxicity of pendimethalin to aquatic microorganisms. Biologija 2006, 3, 59–62. | pl_PL |
dc.references | Bonnet, J.-L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 2007, 22, 78–91. | pl_PL |
dc.references | Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. | pl_PL |
dc.references | IUPAC THE PPDB Pesticide Properties Database. Available online: https://sitem.herts.ac.uk/aeru/iupac/index.htm (accessed on 24 October 2018). | pl_PL |
dc.references | EPA United States Environmental Protection Agency. Available online: https://www3.epa.gov/pesticides/endanger/litstatus/effects/pendimeth/analysis.pdf (accessed on 24 October 2018). | pl_PL |
dc.references | Thurston County Washington Public Health & Social Services. Available online: https://www.co.thurston.wa.us/health/ehipm/pdf_terr/terrestrial%20actives/pendimethalin.pdf (accessed on 24 October 2018). | pl_PL |
dc.references | Vighi, M.; Matthies, M.; Solomon, K.R. Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. J. Toxicol. Environ. Health B 2017, 20, 1–21. | pl_PL |
dc.references | Costa, A.G.F.; Sofiatti, V.; Maciel, C.D.G.; Lira, A.J.S.; Cordeiro, A.F., Jr.; Silva, R.L.M. Weed Management With Herbicides Applied in Pre and Postemergence on Castor Crop. Planta Daninha 2015, 33, 551–559. | pl_PL |
dc.references | Lewkowski, J.; Rodriguez Moya, M.; Chmielak, M.; Rogacz, D.; Lewicka, K.; Rychter, P. Synthesis, spectral characterization of several novel pyrene-derived aminophosphonates and their ecotoxicological evaluation using Heterocypris incongruens and Vibrio fischeri tests. Molecules 2016, 21, 936. | pl_PL |
dc.references | Doe, K.; Scroggins, R.; Mcleay, D.; Wohlgeschaffen, G. Solid-phase test for sediment toxicity using the luminescent bacterium Vibrio fischeri. In Small-Scale Freshwater Toxicity Investigations; Blaise, C., Férard, J.F., Eds.; Springer: Dordrecht, Netherlands, 2005; Volume 1, pp. 107–136. | pl_PL |
dc.references | Martínez-Sanchez, M.J.; Pérez-Sirvent, C.; García-Lorenzo, M.L.; Martínez-López, S.; Bech, J.; García-Tenorio, R.; Bolívar, J.P. Use of bioassays for the assessment of areas affected by phosphate industry wastes. J. Geochem. Explor. 2014, 147, 130–138. | pl_PL |
dc.identifier.doi | 10.3390/molecules23123173 | |
dc.relation.volume | 3173 | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |