Pokaż uproszczony rekord

dc.contributor.authorKubalczyk, Paweł
dc.contributor.authorPurgat, Krystian
dc.contributor.authorGłowacki, Rafał
dc.contributor.authorKośka, Izabella
dc.date.accessioned2021-12-16T08:10:04Z
dc.date.available2021-12-16T08:10:04Z
dc.date.issued2021
dc.identifier.citationKośka, I.; Purgat, K.; Głowacki, R.; Kubalczyk, P. Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis. Molecules 2021, 26, 6931. https:// doi.org/10.3390/molecules26226931pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/40066
dc.description.abstractWe have developed a precise and accurate method for the determination of ciprofloxacin and ofloxacin in meat tissues. Our method utilizes capillary electrophoresis with a transient pseudoisotachophoresis mechanism and liquid–liquid extraction during sample preparation. For our experiment, a meat tissue sample was homogenized in pH 7.00 phosphate buffer at a ratio of 1:10 (tissue mass: buffer volume; g/mL). The extraction of each sample was carried out twice for 15 min with 600 µL of a mixture of dichloromethane and acetonitrile at a 2:1 volume ratio. We then conducted the electrophoretic separation at a voltage of 16 kV and a temperature of 25 ◦C using a background electrolyte of 0.1 mol/L phosphate–borate (pH 8.40). We used the UV detection at 288 nm. The experimentally determined LOQs for ciprofloxacin and ofloxacin were 0.27 ppm (0.8 nmol/g tissue) and 0.11 ppm (0.3 nmol/g tissue), respectively. The calibration curves exhibited linearity over the tested concentration range of 2 to 10 nmol/g tissue for both analytes. The relative standard deviation of the determination did not exceed 15%, and the recovery was in the range of 85–115%. We used the method to analyze various meat tissues for their ciprofloxacin and ofloxacin contents.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;26(22)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcapillary electrophoresispl_PL
dc.subjecttransient pseudo-isotachophoresispl_PL
dc.subjectextractionpl_PL
dc.subjectantibioticspl_PL
dc.subjectciprofloxacinpl_PL
dc.subjectofloxacinpl_PL
dc.titleSimultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresispl_PL
dc.typeArticlepl_PL
dc.page.number10pl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDoctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.referencesMohamed Derayea, S.; Ahmed Omar, M.; Abdelkhalek Hammad, M.; Farag Hassan, Y.; Badr El-Din, K.M. Augmented spectrofluorimetric determination of certain fluoroquinolones via micellar—Metal complex connection: Application to pharmaceuticals and biological fluids. Microchem. J. 2021, 160, 105717.pl_PL
dc.referencesYıldırım, S.; Karakoç, H.N.; Ya¸sar, A.; Köksal, ˙I. Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC–FLD–DAD using pentafluorophenyl core–shell column: Application to drug monitoring. Biomed. Chromatogr. 2020, 34, e4925.pl_PL
dc.referencesGuan, S.; Wu, H.; Yang, L.; Wang, Z.; Wu, J. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. J. Sep. Sci. 2020, 43, 3775–3784.pl_PL
dc.referencesWang, Z.; Wang, X.Y.; Tian, H.; Wei, Q.H.; Liu, B.S.; Bao, G.M.; Liao, M.L.; Peng, J.L.; Huang, X.Q.; Wang, L.Q. High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 2019, 230, 337–346.pl_PL
dc.referencesTian, H.; Liu, T.; Mu, G.; Chen, F.; He, M.; You, S.; Yang, M.; Li, Y.; Zhang, F. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta 2020, 219, 121282.pl_PL
dc.referencesYu, L.; Yue, M.E.; Xu, J.; Jiang, T.F. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chem. 2020, 332, 127371.pl_PL
dc.referencesCairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC–DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020, 34, e4880.pl_PL
dc.referencesMaia, A.S.; Paíga, P.; Delerue-Matos, C.; Castro, P.M.L.; Tiritan, M.E. Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ. Pollut. 2020, 259, 113927.pl_PL
dc.referencesZiarrusta, H.; Val, N.; Dominguez, H.; Mijangos, L.; Prieto, A.; Usobiaga, A.; Etxebarria, N.; Zuloaga, O.; Olivares, M. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 6359–6370.pl_PL
dc.referencesMagalhães, D.; Freitas, A.; Sofia Vila Pouca, A.; Barbosa, J.; Ramos, F. The use of ultra-high-pressure-liquid-chromatography tandem time-of-flight mass spectrometry as a confirmatory method in drug residue analysis: Application to the determination of antibiotics in piglet liver. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1153, 122264.pl_PL
dc.referencesLi, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 257, 259–264.pl_PL
dc.referencesGao, W.; Chen, G.; Chen, Y.; Zhang, X.; Yin, Y.; Hu, Z. Application of single drop liquid-liquid-liquid microextraction for the determination of fluoroquinolones in human urine by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 291–295.pl_PL
dc.referencesVera-Candioti, L.; Teglia, C.M.; Cámara, M.S. Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design. Electrophoresis 2016, 37, 2670–2677.pl_PL
dc.referencesBaciu, T.; Borrull, F.; Neusüß, C.; Aguilar, C.; Calull, M. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine. Electrophoresis 2016, 37, 1232–1244.pl_PL
dc.referencesKubalczyk, P.; Bald, E. Methods of analyte concentration in a capillary. Springer Ser. Chem. Phys. 2013, 105, 215–235.pl_PL
dc.referencesZhang, H.; Deng, Y.; Zhao, M.Z.; Zhou, Y.L.; Zhang, X.X. Highly-sensitive detection of eight typical fluoroquinolone antibiotics by capillary electrophoresis-mass spectroscopy coupled with immunoaffinity extraction. RSC Adv. 2018, 8, 4063–4071.pl_PL
dc.referencesMartinez-Perez-Cejuela, H.; Benavente, F.; Simo-Alfonso, E.F.; Herrero-Martinez, J.M. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta 2021, 233, 122529.pl_PL
dc.references. FDA, Cder, Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations. 2018. Available online: http: //www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/ AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm (accessed on 8 April 2020).pl_PL
dc.references. Sun, H.-W.; He, P.; Lv, Y.-K.; Liang, S.-X. Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 145–151.pl_PL
dc.referencesTimofeeva, I.; Stepanova, K.; Shishov, A.; Nugbienyo, L.; Moskvin, L.; Bulatov, A. Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation. J. Food Compos. Anal. 2020, 93, 103589.pl_PL
dc.referencesVan Hoof, N.; De Wasch, K.; Okerman, L.; Reybroeck, W.; Poelmans, S.; Noppe, H.; De Brabander, H. Validation of a liquid chromatography-tandem mass spectrometric method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products. Anal. Chim. Acta 2005, 529, 265–272.pl_PL
dc.referencesBiselli, S.; Schwalb, U.; Meyer, A.; Hartig, L. A multi-class, multi-analyte method for routine analysis of 84 veterinary drugs in chicken muscle using simple extraction and LC-MS/MS. Food Addit. Contam. Part A 2013, 30, 921–939.pl_PL
dc.referencesJi, X.; Xu, Y.; Wang, J.; Lyu, W.; Li, R.; Tan, S.; Xiao, Y.; Tang, B.; Yang, H.; Qian, M. Multiresidue determination of antibiotics in ready-to-eat duck eggs marketed through e-commerce stores in China and subsequent assessment of dietary risks to consumers. J. Food Sci. 2021, 86, 2145–2162.pl_PL
dc.referencesWei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. J. Sep. Sci. 2020, 43, 3093–3102.pl_PL
dc.referencesOuyang, Y.-Z.; Wu, H.-L.; Fang, H.; Wang, T.; Sun, X.-D.; Chang, Y.-Y.; Ding, Y.-J.; Yu, R.-Q. Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117458.pl_PL
dc.referencesShihabi, Z.K. Stacking and discontinuous buffers in capillary zone electrophoresis. Electrophoresis 2000, 21, 2872–2878.pl_PL
dc.referencesShihabi, Z.K.; Hinsdale, M.E.; Cheng, C.P. Analysis of glutathione by capillary electrophoresis based on sample stacking. Electrophoresis 2001, 22, 2351–2354.pl_PL
dc.referencesShihabi, Z.K. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis 2002, 23, 1612–1617.pl_PL
dc.referencesChen, Y.; Xu, L.; Zhang, L.; Chen, G. Separation and determination of peptide hormones by capillary electrophoresis with laser-induced fluorescence coupled with transient pseudo-isotachophoresis preconcentration. Anal. Biochem. 2008, 380, 297–302.pl_PL
dc.references. Kubalczyk, P.; Bald, E. Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis 2009, 30, 2280–2283.pl_PL
dc.referencesKubalczyk, P.; Bald, E. Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis 2008, 29, 3636–3640.pl_PL
dc.referencesBotello, I.; Borrull, F.; Calull, M.; Aguilar, C. Simultaneous determination of weakly ionizable analytes in urine and plasma samples by transient pseudo-isotachophoresis in capillary zone electrophoresis. Anal. Bioanal. Chem. 2011, 400, 527–534.pl_PL
dc.referencesYu Kong Feng, H.; Yang, G.; Kong, L.; Hou, L.; Li, H.; Gao, M. Stacking and Detecting Blood Glutathione as a Cation under Strong Acidic Conditions by Capillary Electrophoresis using Acetonitrile-salt Stacking Method. J. Anal. Chem. 2020, 75, 225–230.pl_PL
dc.contributor.authorEmailpawel.kubalczyk@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailkrystian.purgat@edu.uni.lodz.plpl_PL
dc.contributor.authorEmailrafal.glowacki@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailizabella.koska@edu.uni.lodz.plpl_PL
dc.identifier.doi10.3390/molecules26226931
dc.relation.volume6931pl_PL
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe