Show simple item record

dc.contributor.authorKubalczyk, Paweł
dc.contributor.authorPurgat, Krystian
dc.contributor.authorGłowacki, Rafał
dc.contributor.authorKośka, Izabella
dc.date.accessioned2021-12-16T08:10:04Z
dc.date.available2021-12-16T08:10:04Z
dc.date.issued2021
dc.identifier.citationKośka, I.; Purgat, K.; Głowacki, R.; Kubalczyk, P. Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis. Molecules 2021, 26, 6931. https:// doi.org/10.3390/molecules26226931pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/40066
dc.description.abstractWe have developed a precise and accurate method for the determination of ciprofloxacin and ofloxacin in meat tissues. Our method utilizes capillary electrophoresis with a transient pseudoisotachophoresis mechanism and liquid–liquid extraction during sample preparation. For our experiment, a meat tissue sample was homogenized in pH 7.00 phosphate buffer at a ratio of 1:10 (tissue mass: buffer volume; g/mL). The extraction of each sample was carried out twice for 15 min with 600 µL of a mixture of dichloromethane and acetonitrile at a 2:1 volume ratio. We then conducted the electrophoretic separation at a voltage of 16 kV and a temperature of 25 ◦C using a background electrolyte of 0.1 mol/L phosphate–borate (pH 8.40). We used the UV detection at 288 nm. The experimentally determined LOQs for ciprofloxacin and ofloxacin were 0.27 ppm (0.8 nmol/g tissue) and 0.11 ppm (0.3 nmol/g tissue), respectively. The calibration curves exhibited linearity over the tested concentration range of 2 to 10 nmol/g tissue for both analytes. The relative standard deviation of the determination did not exceed 15%, and the recovery was in the range of 85–115%. We used the method to analyze various meat tissues for their ciprofloxacin and ofloxacin contents.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;26(22)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcapillary electrophoresispl_PL
dc.subjecttransient pseudo-isotachophoresispl_PL
dc.subjectextractionpl_PL
dc.subjectantibioticspl_PL
dc.subjectciprofloxacinpl_PL
dc.subjectofloxacinpl_PL
dc.titleSimultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresispl_PL
dc.typeArticlepl_PL
dc.page.number10pl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDoctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.referencesMohamed Derayea, S.; Ahmed Omar, M.; Abdelkhalek Hammad, M.; Farag Hassan, Y.; Badr El-Din, K.M. Augmented spectrofluorimetric determination of certain fluoroquinolones via micellar—Metal complex connection: Application to pharmaceuticals and biological fluids. Microchem. J. 2021, 160, 105717.pl_PL
dc.referencesYıldırım, S.; Karakoç, H.N.; Ya¸sar, A.; Köksal, ˙I. Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC–FLD–DAD using pentafluorophenyl core–shell column: Application to drug monitoring. Biomed. Chromatogr. 2020, 34, e4925.pl_PL
dc.referencesGuan, S.; Wu, H.; Yang, L.; Wang, Z.; Wu, J. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. J. Sep. Sci. 2020, 43, 3775–3784.pl_PL
dc.referencesWang, Z.; Wang, X.Y.; Tian, H.; Wei, Q.H.; Liu, B.S.; Bao, G.M.; Liao, M.L.; Peng, J.L.; Huang, X.Q.; Wang, L.Q. High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 2019, 230, 337–346.pl_PL
dc.referencesTian, H.; Liu, T.; Mu, G.; Chen, F.; He, M.; You, S.; Yang, M.; Li, Y.; Zhang, F. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta 2020, 219, 121282.pl_PL
dc.referencesYu, L.; Yue, M.E.; Xu, J.; Jiang, T.F. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chem. 2020, 332, 127371.pl_PL
dc.referencesCairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC–DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020, 34, e4880.pl_PL
dc.referencesMaia, A.S.; Paíga, P.; Delerue-Matos, C.; Castro, P.M.L.; Tiritan, M.E. Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ. Pollut. 2020, 259, 113927.pl_PL
dc.referencesZiarrusta, H.; Val, N.; Dominguez, H.; Mijangos, L.; Prieto, A.; Usobiaga, A.; Etxebarria, N.; Zuloaga, O.; Olivares, M. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 6359–6370.pl_PL
dc.referencesMagalhães, D.; Freitas, A.; Sofia Vila Pouca, A.; Barbosa, J.; Ramos, F. The use of ultra-high-pressure-liquid-chromatography tandem time-of-flight mass spectrometry as a confirmatory method in drug residue analysis: Application to the determination of antibiotics in piglet liver. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1153, 122264.pl_PL
dc.referencesLi, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 257, 259–264.pl_PL
dc.referencesGao, W.; Chen, G.; Chen, Y.; Zhang, X.; Yin, Y.; Hu, Z. Application of single drop liquid-liquid-liquid microextraction for the determination of fluoroquinolones in human urine by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 291–295.pl_PL
dc.referencesVera-Candioti, L.; Teglia, C.M.; Cámara, M.S. Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design. Electrophoresis 2016, 37, 2670–2677.pl_PL
dc.referencesBaciu, T.; Borrull, F.; Neusüß, C.; Aguilar, C.; Calull, M. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine. Electrophoresis 2016, 37, 1232–1244.pl_PL
dc.referencesKubalczyk, P.; Bald, E. Methods of analyte concentration in a capillary. Springer Ser. Chem. Phys. 2013, 105, 215–235.pl_PL
dc.referencesZhang, H.; Deng, Y.; Zhao, M.Z.; Zhou, Y.L.; Zhang, X.X. Highly-sensitive detection of eight typical fluoroquinolone antibiotics by capillary electrophoresis-mass spectroscopy coupled with immunoaffinity extraction. RSC Adv. 2018, 8, 4063–4071.pl_PL
dc.referencesMartinez-Perez-Cejuela, H.; Benavente, F.; Simo-Alfonso, E.F.; Herrero-Martinez, J.M. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta 2021, 233, 122529.pl_PL
dc.references. FDA, Cder, Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations. 2018. Available online: http: //www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/ AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm (accessed on 8 April 2020).pl_PL
dc.references. Sun, H.-W.; He, P.; Lv, Y.-K.; Liang, S.-X. Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 145–151.pl_PL
dc.referencesTimofeeva, I.; Stepanova, K.; Shishov, A.; Nugbienyo, L.; Moskvin, L.; Bulatov, A. Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation. J. Food Compos. Anal. 2020, 93, 103589.pl_PL
dc.referencesVan Hoof, N.; De Wasch, K.; Okerman, L.; Reybroeck, W.; Poelmans, S.; Noppe, H.; De Brabander, H. Validation of a liquid chromatography-tandem mass spectrometric method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products. Anal. Chim. Acta 2005, 529, 265–272.pl_PL
dc.referencesBiselli, S.; Schwalb, U.; Meyer, A.; Hartig, L. A multi-class, multi-analyte method for routine analysis of 84 veterinary drugs in chicken muscle using simple extraction and LC-MS/MS. Food Addit. Contam. Part A 2013, 30, 921–939.pl_PL
dc.referencesJi, X.; Xu, Y.; Wang, J.; Lyu, W.; Li, R.; Tan, S.; Xiao, Y.; Tang, B.; Yang, H.; Qian, M. Multiresidue determination of antibiotics in ready-to-eat duck eggs marketed through e-commerce stores in China and subsequent assessment of dietary risks to consumers. J. Food Sci. 2021, 86, 2145–2162.pl_PL
dc.referencesWei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. J. Sep. Sci. 2020, 43, 3093–3102.pl_PL
dc.referencesOuyang, Y.-Z.; Wu, H.-L.; Fang, H.; Wang, T.; Sun, X.-D.; Chang, Y.-Y.; Ding, Y.-J.; Yu, R.-Q. Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117458.pl_PL
dc.referencesShihabi, Z.K. Stacking and discontinuous buffers in capillary zone electrophoresis. Electrophoresis 2000, 21, 2872–2878.pl_PL
dc.referencesShihabi, Z.K.; Hinsdale, M.E.; Cheng, C.P. Analysis of glutathione by capillary electrophoresis based on sample stacking. Electrophoresis 2001, 22, 2351–2354.pl_PL
dc.referencesShihabi, Z.K. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis 2002, 23, 1612–1617.pl_PL
dc.referencesChen, Y.; Xu, L.; Zhang, L.; Chen, G. Separation and determination of peptide hormones by capillary electrophoresis with laser-induced fluorescence coupled with transient pseudo-isotachophoresis preconcentration. Anal. Biochem. 2008, 380, 297–302.pl_PL
dc.references. Kubalczyk, P.; Bald, E. Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis 2009, 30, 2280–2283.pl_PL
dc.referencesKubalczyk, P.; Bald, E. Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis 2008, 29, 3636–3640.pl_PL
dc.referencesBotello, I.; Borrull, F.; Calull, M.; Aguilar, C. Simultaneous determination of weakly ionizable analytes in urine and plasma samples by transient pseudo-isotachophoresis in capillary zone electrophoresis. Anal. Bioanal. Chem. 2011, 400, 527–534.pl_PL
dc.referencesYu Kong Feng, H.; Yang, G.; Kong, L.; Hou, L.; Li, H.; Gao, M. Stacking and Detecting Blood Glutathione as a Cation under Strong Acidic Conditions by Capillary Electrophoresis using Acetonitrile-salt Stacking Method. J. Anal. Chem. 2020, 75, 225–230.pl_PL
dc.contributor.authorEmailpawel.kubalczyk@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailkrystian.purgat@edu.uni.lodz.plpl_PL
dc.contributor.authorEmailrafal.glowacki@chemia.uni.lodz.plpl_PL
dc.contributor.authorEmailizabella.koska@edu.uni.lodz.plpl_PL
dc.identifier.doi10.3390/molecules26226931
dc.relation.volume6931pl_PL
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe