Pokaż uproszczony rekord

dc.contributor.authorNiedziałomski, Kamil
dc.date.accessioned2021-11-19T10:57:22Z
dc.date.available2021-11-19T10:57:22Z
dc.date.issued2019
dc.identifier.citationNiedziałomski, K. An integral formula for Riemannian G-structures with applications to almost Hermitian and almost contact structures. Ann Glob Anal Geom 56, 167–192 (2019). https://doi.org/10.1007/s10455-019-09662-zpl_PL
dc.identifier.issn0232-704X
dc.identifier.urihttp://hdl.handle.net/11089/39819
dc.descriptionMathematics Subject Classification 53C10 · 53C24 · 53C43pl_PL
dc.description.abstractFor a Riemannian G-structure, we compute the divergence of the vector field induced by the intrinsic torsion. Applying the Stokes theorem, we obtain the integral formula on a closed oriented Riemannian manifold, which we interpret in certain cases. We focus on almost Hermitian and almost contact metric structures.pl_PL
dc.description.sponsorshipI wish to thank Ilka Agricola for indication of references [4] and [1] and helpful conversations. The author is partially supported by the National Science Center, Poland—Grant Miniatura 2017/01/X/ST1/01724.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;56
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectIntegral formulapl_PL
dc.subjectIntrinsic torsionpl_PL
dc.subjectAlmost Hermitian structurespl_PL
dc.subjectAlmost contact metric structurespl_PL
dc.titleAn integral formula for Riemannian G-structures with applications to almost Hermitian and almost contact structurespl_PL
dc.typeArticlepl_PL
dc.rights.holder© The Author(s) 2019pl_PL
dc.page.number167–192pl_PL
dc.contributor.authorAffiliationDepartment of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Lodz, Polandpl_PL
dc.identifier.eissn1572-9060
dc.referencesAgricola, I.: Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory. Comm. Math. Phys. 232(3), 535–563 (2003)pl_PL
dc.referencesAgricola, I.: The Srni lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42(suppl.), 5–84 (2006)pl_PL
dc.referencesBaum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner Texts in Mathematics. Stuttgart (1991)pl_PL
dc.referencesBerger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics. Springer, Berlin (1977)pl_PL
dc.referencesBor, G., Hernández Lamoneda, L.: Bochner formulae for orthogonal G-structures on compact manifolds. Differential Geom. Appl. 15(3), 265–286 (2001)pl_PL
dc.referencesBor, G., Hernández Lamoneda, L.: A Bochner formula for almost-quaternionic-Hermitian structures. Differential Geom. Appl. 21(1), 79–92 (2004)pl_PL
dc.referencesChinea, D., González-Dávila, J.C.: A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. (4) 156, 15–36 (1990)pl_PL
dc.referencesChiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G2 structures. In: Differential Geometry, Valencia, 2001, pp. 115–133. World Science Publications, River Edge, NJ (2002)pl_PL
dc.referencesFalcitelli, M., Farinola, A.: Curvature properties of the locally conformal Kähler manifolds. Rend. Math. 11, 495–521 (1991)pl_PL
dc.referencesFalcitelli, M., Farinola, A.: Curvature properties of almost Hermitian manifolds. Riv. Math. Univ. Parma (5) 3, 301–320 (1994)pl_PL
dc.referencesFernández, M., Gray, A.: Riemannian manifolds with structure group G2. Ann. Mat. Pura Appl. (4) 132(1982), 19–45 (1983)pl_PL
dc.referencesGonzález-Dávila, J.C., Martin Cabrera, F.: Harmonic almost contact structures via the intrinsic torsion. Israel J. Math. 181, 145–187 (2011)pl_PL
dc.referencesGray, A.: The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976)pl_PL
dc.referencesGray, A., Hervella, L.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980)pl_PL
dc.referencesGray, A.: Curvature identities for Hermitian and almost Hermitian manifolds. Tohoku Math. J. 28, 601–612 (1976)pl_PL
dc.referencesJensen, G.: Imbeddings of Stiefel manifolds into Grassmannians. Duke Math. J. 42(3), 397–407 (1975)pl_PL
dc.referencesJanssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4, 1–27 (1981)pl_PL
dc.referencesKim, T., Pak, H.: Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. (Engl. Ser.) 21(4), 841–846 (2005)pl_PL
dc.referencesKoto, S.: Some theorems on almost kählerian spaces. J. Math. Soc. Japan 12, 422–433 (1960)pl_PL
dc.referencesMartin Cabrera, F.: Special almost Hermitian geometry. J. Geom. Phys. 55(4), 450–470 (2005)pl_PL
dc.referencesSwann, A.: Aspects symplectiques de la géométrie quaternionique. C. R. Acad. Sci. Paris Sér. I Math. 308(7), 225–228 (1989)pl_PL
dc.referencesVaisman, I.: Some curvature properties of Locally conformal Kähler manifolds. Trans. Amer. Math. Soc. 259(2), 439–447 (1980)pl_PL
dc.referencesWalczak, P.: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58(2), 243–252 (1990)pl_PL
dc.contributor.authorEmailkamil.niedzialomski@wmii.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10455-019-09662-z
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe