dc.contributor.author | Niedziałomski, Kamil | |
dc.date.accessioned | 2021-11-19T10:57:22Z | |
dc.date.available | 2021-11-19T10:57:22Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Niedziałomski, K. An integral formula for Riemannian G-structures with applications to almost Hermitian and almost contact structures. Ann Glob Anal Geom 56, 167–192 (2019). https://doi.org/10.1007/s10455-019-09662-z | pl_PL |
dc.identifier.issn | 0232-704X | |
dc.identifier.uri | http://hdl.handle.net/11089/39819 | |
dc.description | Mathematics Subject Classification 53C10 · 53C24 · 53C43 | pl_PL |
dc.description.abstract | For a Riemannian G-structure, we compute the divergence of the vector field induced by the intrinsic torsion. Applying the Stokes theorem, we obtain the integral formula on a closed oriented Riemannian manifold, which we interpret in certain cases. We focus on almost Hermitian and almost contact metric structures. | pl_PL |
dc.description.sponsorship | I wish to thank Ilka Agricola for indication of references [4] and [1] and helpful conversations. The author is partially supported by the National Science Center, Poland—Grant Miniatura 2017/01/X/ST1/01724. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Annals of Global Analysis and Geometry;56 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Integral formula | pl_PL |
dc.subject | Intrinsic torsion | pl_PL |
dc.subject | Almost Hermitian structures | pl_PL |
dc.subject | Almost contact metric structures | pl_PL |
dc.title | An integral formula for Riemannian G-structures with applications to almost Hermitian and almost contact structures | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © The Author(s) 2019 | pl_PL |
dc.page.number | 167–192 | pl_PL |
dc.contributor.authorAffiliation | Department of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Lodz, Poland | pl_PL |
dc.identifier.eissn | 1572-9060 | |
dc.references | Agricola, I.: Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory. Comm. Math. Phys. 232(3), 535–563 (2003) | pl_PL |
dc.references | Agricola, I.: The Srni lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42(suppl.), 5–84 (2006) | pl_PL |
dc.references | Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner Texts in Mathematics. Stuttgart (1991) | pl_PL |
dc.references | Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics. Springer, Berlin (1977) | pl_PL |
dc.references | Bor, G., Hernández Lamoneda, L.: Bochner formulae for orthogonal G-structures on compact manifolds. Differential Geom. Appl. 15(3), 265–286 (2001) | pl_PL |
dc.references | Bor, G., Hernández Lamoneda, L.: A Bochner formula for almost-quaternionic-Hermitian structures. Differential Geom. Appl. 21(1), 79–92 (2004) | pl_PL |
dc.references | Chinea, D., González-Dávila, J.C.: A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. (4) 156, 15–36 (1990) | pl_PL |
dc.references | Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G2 structures. In: Differential Geometry, Valencia, 2001, pp. 115–133. World Science Publications, River Edge, NJ (2002) | pl_PL |
dc.references | Falcitelli, M., Farinola, A.: Curvature properties of the locally conformal Kähler manifolds. Rend. Math. 11, 495–521 (1991) | pl_PL |
dc.references | Falcitelli, M., Farinola, A.: Curvature properties of almost Hermitian manifolds. Riv. Math. Univ. Parma (5) 3, 301–320 (1994) | pl_PL |
dc.references | Fernández, M., Gray, A.: Riemannian manifolds with structure group G2. Ann. Mat. Pura Appl. (4) 132(1982), 19–45 (1983) | pl_PL |
dc.references | González-Dávila, J.C., Martin Cabrera, F.: Harmonic almost contact structures via the intrinsic torsion. Israel J. Math. 181, 145–187 (2011) | pl_PL |
dc.references | Gray, A.: The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976) | pl_PL |
dc.references | Gray, A., Hervella, L.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980) | pl_PL |
dc.references | Gray, A.: Curvature identities for Hermitian and almost Hermitian manifolds. Tohoku Math. J. 28, 601–612 (1976) | pl_PL |
dc.references | Jensen, G.: Imbeddings of Stiefel manifolds into Grassmannians. Duke Math. J. 42(3), 397–407 (1975) | pl_PL |
dc.references | Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4, 1–27 (1981) | pl_PL |
dc.references | Kim, T., Pak, H.: Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. (Engl. Ser.) 21(4), 841–846 (2005) | pl_PL |
dc.references | Koto, S.: Some theorems on almost kählerian spaces. J. Math. Soc. Japan 12, 422–433 (1960) | pl_PL |
dc.references | Martin Cabrera, F.: Special almost Hermitian geometry. J. Geom. Phys. 55(4), 450–470 (2005) | pl_PL |
dc.references | Swann, A.: Aspects symplectiques de la géométrie quaternionique. C. R. Acad. Sci. Paris Sér. I Math. 308(7), 225–228 (1989) | pl_PL |
dc.references | Vaisman, I.: Some curvature properties of Locally conformal Kähler manifolds. Trans. Amer. Math. Soc. 259(2), 439–447 (1980) | pl_PL |
dc.references | Walczak, P.: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58(2), 243–252 (1990) | pl_PL |
dc.contributor.authorEmail | kamil.niedzialomski@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s10455-019-09662-z | |
dc.discipline | matematyka | pl_PL |