dc.contributor.author | Goldstein, Stanisław | |
dc.contributor.author | Paszkiewicz, Adam | |
dc.date.accessioned | 2021-11-17T10:38:04Z | |
dc.date.available | 2021-11-17T10:38:04Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Stanisław Goldstein, Adam Paszkiewicz, Linear combination of projections in von Neumann factors, Journal of Mathematical Analysis and Applications, Volume 489, Issue 1, 2020, 124135, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2020.124135. | pl_PL |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | http://hdl.handle.net/11089/39789 | |
dc.description.abstract | It is shown that any self-adjoint operator in a finite discrete or infinite von Neumann factor can be written as a real linear combination of 4 projections. On the other hand, in any type II1 algebra and in any type II∞ factor there exists a self-adjoint operator that is not a linear combination of 3 projections. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications;489 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Projection | pl_PL |
dc.subject | Linear combination | pl_PL |
dc.subject | Factor | pl_PL |
dc.title | Linear combination of projections in von Neumann factors | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 17 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland | pl_PL |
dc.references | B. Blackadar Operator Algebras: Theory of ⁎ -Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin (2006) | pl_PL |
dc.references | Thierry Fack, Hideki Kosaki Generalized s-numbers of τ-measurable operators Pac. J. Math., 123 (2) (1986), pp. 269-300 | pl_PL |
dc.references | Peter A. Fillmore Sums of operators with square zero Acta Sci. Math. (Szeged), 28 (1967), pp. 285-288 | pl_PL |
dc.references | Peter A. Fillmore On sums of projections J. Funct. Anal., 4 (1969), pp. 146-152 | pl_PL |
dc.references | Stanisław Goldstein, Adam Paszkiewicz Linear combinations of projections in von Neumann algebras Proc. Am. Math. Soc., 116 (1) (1992), pp. 175-183 | pl_PL |
dc.references | P.R. Halmos Two subspaces Trans. Am. Math. Soc., 144 (1969), pp. 381-389 | pl_PL |
dc.references | Herbert Halpern, Victor Kaftal, Ping Wong Ng, Shuang Zhang Finite sums of projections in von Neumann algebras Trans. Am. Math. Soc., 365 (5) (2013), pp. 2409-2445 | pl_PL |
dc.references | Richard V. Kadison, John R. Ringrose Fundamentals of the Theory of Operator Algebras. Vol. II: Advanced Theory Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL (1986) | pl_PL |
dc.references | Victor Kaftal, PingWong Ng, Shuang Zhang Positive combinations of projections in von Neumann algebras and purely infinite simple C⁎-algebras Sci. China Math., 54 (11) (2011), pp. 2383-2393 | pl_PL |
dc.references | Victor Kaftal, P.W. Ng, Shuang Zhang Commutators and linear spans of projections in certain finite C*-algebras J. Funct. Anal., 266 (4) (2014), pp. 1883-1912 | pl_PL |
dc.references | Kenneth Kunen Set Theory Studies in Logic (London), vol. 34, College Publications, London (2011) | pl_PL |
dc.references | Yoshihiro Nakamura Any Hermitian matrix is a linear combination of four projections Linear Algebra Appl., 61 (1984), pp. 133-139 | pl_PL |
dc.references | Katsuyoshi Nishio The structure of a real linear combination of two projections Linear Algebra Appl., 66 (1985), pp. 169-176 | pl_PL |
dc.references | Adam Paszkiewicz, Self-adjoint operators as a real linear span of 4 projections, unpublished. | pl_PL |
dc.references | Adam Paszkiewicz Any selfadjoint operator is a finite linear combination of projectors Bull. Acad. Pol. Sci., Sér. Sci. Math., 28 (7–8) (1981), pp. 337-345 | pl_PL |
dc.references | Carl Pearcy, David Topping Sums of small numbers of idempotents Mich. Math. J., 14 (1967), pp. 453-465 | pl_PL |
dc.references | Viacheslav Rabanovich Every bounded self-adjoint operators is a real linear combination of 4 orthoprojections arXiv:1608.04445 [math.OA] | pl_PL |
dc.references | Masamichi Takesaki Theory of Operator Algebras. I Springer-Verlag, New York-Heidelberg (1979) | pl_PL |
dc.references | J. Tomiyama Generalized dimension function for w⁎ -algebras of infinite type Tohoku Math. J., 2 (10) (1958), pp. 121-129 | pl_PL |
dc.contributor.authorEmail | stanislaw.goldstein@wmii.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | adam.paszkiewicz@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1016/j.jmaa.2020.124135 | |
dc.relation.volume | 1 | pl_PL |
dc.discipline | matematyka | pl_PL |